June  2013, 6(2): 219-243. doi: 10.3934/krm.2013.6.219

Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

2. 

School of Mathematics, Watson Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

3. 

Laboratoire de Mathématiques de Versailles, CNRS UMR 8100, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue de États-Unis, 78035 Versailles cedex, France

Received  October 2012 Revised  November 2012 Published  February 2013

We are concerned with the long-time behavior of the growth-frag-mentation equation. We prove fine estimates on the principal eigenfunctions of the growth-fragmentation operator, giving their first-order behavior close to $0$ and $+\infty$. Using these estimates we prove a spectral gap result by following the technique in [1], which implies that solutions decay to the equilibrium exponentially fast. The growth and fragmentation coefficients we consider are quite general, essentially only assumed to behave asymptotically like power laws.
Citation: Daniel Balagué, José A. Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinetic & Related Models, 2013, 6 (2) : 219-243. doi: 10.3934/krm.2013.6.219
References:
[1]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations,, J. Math. Pures Appl. (9), 96 (2011), 334.  doi: 10.1016/j.matpur.2011.01.003.  Google Scholar

[2]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model,, Math. Models Methods Appl. Sci., 20 (2010), 757.  doi: 10.1142/S021820251000443X.  Google Scholar

[3]

M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99.  doi: 10.1016/j.anihpc.2004.06.001.  Google Scholar

[4]

P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases],", Ph.D thesis, (2011).   Google Scholar

[5]

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation,, Comm. Math. Sci., 7 (2009), 503.   Google Scholar

[6]

J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations,", Lecture notes in Biomathematics, 68 (1986).   Google Scholar

[7]

P. Michel, Existence of a solution to the cell division eigenproblem,, Math. Models Methods Appl. Sci., 16 (2006), 1125.  doi: 10.1142/S0218202506001480.  Google Scholar

[8]

P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering,, C. R. Math. Acad. Sci. Paris, 338 (2004), 697.  doi: 10.1016/j.crma.2004.03.006.  Google Scholar

[9]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl. (9), 84 (2005), 1235.  doi: 10.1016/j.matpur.2005.04.001.  Google Scholar

[10]

B. Perthame, "Transport Equations in Biology,", Frontiers in Mathematics, (2007).   Google Scholar

[11]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation,, J. Differential Equations, 210 (2005), 155.  doi: 10.1016/j.jde.2004.10.018.  Google Scholar

[12]

B. Perthame and D. Salort, Distributed elapsed time model for neuron networks,, in preparation., ().   Google Scholar

[13]

R. Wong, "Asymptotic Approximation of Integrals,", Corrected reprint of the 1989 original, 34 (1989).  doi: 10.1137/1.9780898719260.  Google Scholar

show all references

References:
[1]

M. J. Cáceres, J. A. Cañizo and S. Mischler, Rate of convergence to an asymptotic profile for the self-similar fragmentation and growth-fragmentation equations,, J. Math. Pures Appl. (9), 96 (2011), 334.  doi: 10.1016/j.matpur.2011.01.003.  Google Scholar

[2]

M. Doumic Jauffret and P. Gabriel, Eigenelements of a general aggregation-fragmentation model,, Math. Models Methods Appl. Sci., 20 (2010), 757.  doi: 10.1142/S021820251000443X.  Google Scholar

[3]

M. Escobedo, S. Mischler and M. Rodríguez Ricard, On self-similarity and stationary problem for fragmentation and coagulation models,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 99.  doi: 10.1016/j.anihpc.2004.06.001.  Google Scholar

[4]

P. Gabriel, "Équations de Transport-Fragmentation et Applications aux Maladies à Prions [Transport-Fragmentation Equations and Applications to Prion Diseases],", Ph.D thesis, (2011).   Google Scholar

[5]

P. Laurençot and B. Perthame, Exponential decay for the growth-fragmentation/cell-division equation,, Comm. Math. Sci., 7 (2009), 503.   Google Scholar

[6]

J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations,", Lecture notes in Biomathematics, 68 (1986).   Google Scholar

[7]

P. Michel, Existence of a solution to the cell division eigenproblem,, Math. Models Methods Appl. Sci., 16 (2006), 1125.  doi: 10.1142/S0218202506001480.  Google Scholar

[8]

P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering,, C. R. Math. Acad. Sci. Paris, 338 (2004), 697.  doi: 10.1016/j.crma.2004.03.006.  Google Scholar

[9]

P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models,, J. Math. Pures Appl. (9), 84 (2005), 1235.  doi: 10.1016/j.matpur.2005.04.001.  Google Scholar

[10]

B. Perthame, "Transport Equations in Biology,", Frontiers in Mathematics, (2007).   Google Scholar

[11]

B. Perthame and L. Ryzhik, Exponential decay for the fragmentation or cell-division equation,, J. Differential Equations, 210 (2005), 155.  doi: 10.1016/j.jde.2004.10.018.  Google Scholar

[12]

B. Perthame and D. Salort, Distributed elapsed time model for neuron networks,, in preparation., ().   Google Scholar

[13]

R. Wong, "Asymptotic Approximation of Integrals,", Corrected reprint of the 1989 original, 34 (1989).  doi: 10.1137/1.9780898719260.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[4]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[7]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[15]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[20]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (15)

[Back to Top]