-
Previous Article
Semi-classical models for the Schrödinger equation with periodic potentials and band crossings
- KRM Home
- This Issue
-
Next Article
On the dynamics of social conflicts: Looking for the black swan
Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations
1. | The Graduate School of China Academy of Engineering Physics, Beijing 100088, China |
2. | Institute of Applied Physics & Computational Math., Beijing 100088 |
References:
[1] |
D. Bian and B. Guo, Well-posedness in critical spaces for the full compressible MHD equations,, to appear in Acta Math. Sci. Ser. B, (2013). Google Scholar |
[2] |
D. Bian and B. Guo, Blow-up of smooth solutions to the compressible MHD equations,, to appear in Appl. Anal., (2013).
doi: 10.1080/00036811.2013.766324. |
[3] |
D. Bian and B. Yuan, Local well-posedness in critical spaces for compressible MHD equations,, submitted, (2010), 1. Google Scholar |
[4] |
D. Bian and B. Yuan, Well-posedness in super critical Besov spaces for compressible MHD equations,, Int. J. Dynamical Systems and Differential Equations, 3 (2011), 383.
doi: 10.1504/IJDSDE.2011.041882. |
[5] |
G.-Q. Chen and D. Wang, Global solution of nonlinear magnetohydrodynamics with large initial data,, J. Differemtial Equations, 182 (2002), 344.
doi: 10.1006/jdeq.2001.4111. |
[6] |
G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations,, Z. Angew. Math. Phys., 54 (2003), 608.
doi: 10.1007/s00033-003-1017-z. |
[7] |
Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations,, Nonlinear Anal., 72 (2010), 4438.
doi: 10.1016/j.na.2010.02.019. |
[8] |
S. Ding, H. Wen, L. Yao and C. Zhu, Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum,, SIAM J. Math. Anal., 44 (2012), 1257.
doi: 10.1137/110836663. |
[9] |
B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars,, Commun. Math. Phys., 226 (2006), 595.
doi: 10.1007/s00220-006-0052-y. |
[10] |
J. Fan, S. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations,, Commun. Math. Phys., 270 (2007), 691.
doi: 10.1007/s00220-006-0167-1. |
[11] |
E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, 26 (2004).
|
[12] |
E. Feireisl and H. Petzeltová, Large-time behavior of solutions to the Navier-Stokes equations of compressible flow,, Arch. Ration. Mech. Anal., 150 (1999), 77.
doi: 10.1007/s002050050181. |
[13] |
E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.
doi: 10.1007/PL00000976. |
[14] |
H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves,, SIAM J. Math. Anal., 26 (1995), 112.
doi: 10.1137/S0036141093247366. |
[15] |
B. Guo and J. Zhang, Global existence of solution for thermally radiative magnetohydrodynamic equations with the displacement current,, J. Math. Phys., 54 (2013).
doi: 10.1063/1.4776205. |
[16] |
D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics,, Z. Angew. Math. Phys., 56 (2005), 791.
doi: 10.1007/s00033-005-4057-8. |
[17] |
X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows,, Arch. Rational Mech. Anal., 197 (2010), 203.
doi: 10.1007/s00205-010-0295-9. |
[18] |
S. Jiang and Q. Jiu, Global existence of solutions to the high-dimensional compressble insentropic Navier-Stokes equations with large initial data,, internal notes, (2006). Google Scholar |
[19] |
A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary-value problems for the one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.
doi: 10.1016/0021-8928(77)90011-9. |
[20] |
S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics,, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384.
doi: 10.3792/pjaa.58.384. |
[21] |
L. D. Laudau and E. M. Lifshitz, "Electrodynamics of Continuous Media,", Course of Theoretical Physics, (1960).
|
[22] |
X. Li, N. Su and D. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data,, J. Hyper. Differential Equations, 8 (2011), 415.
doi: 10.1142/S0219891611002457. |
[23] |
P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 1. Incompressible Models,", Oxford Lecture Series in Mathematics and its Applications, 3 (1996).
|
[24] |
P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 2, Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, 10 (1998).
|
[25] |
T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws,, Memoirs of the American Mathematical Society, 125 (1997).
|
[26] |
T.-P. Liu, Z. Xin and T. Yang, Vacuum states of compressible flows,, Discrete Contin. Dyn. Syst., 4 (1998), 1.
doi: 10.3934/dcds.1998.4.1. |
[27] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM. J. Math. Anal., 31 (1999), 1175.
doi: 10.1137/S0036141097331044. |
[28] |
H. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations,, J. Differential Equations, 248 (2010), 2275.
doi: 10.1016/j.jde.2009.11.031. |
[29] |
P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space,, Nonlinearity, 4 (1991), 503.
doi: 10.1088/0951-7715/4/2/013. |
[30] |
X. Pu and B. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations,, to appear in Z. Angew. Math. Phys., (2012).
doi: 10.1007/s00033-012-0245-5. |
[31] |
S. N. Shore, "An Introduction to Atrophysical Hydrodynamics,", Academic Press, (1992). Google Scholar |
[32] |
D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics,, SIAM J. Appl. Math., 63 (2003), 1424.
doi: 10.1137/S0036139902409284. |
[33] |
J. Wu, Generalized MHD equations,, J. Differemtial Equations, 195 (2003), 284.
doi: 10.1016/j.jde.2003.07.007. |
[34] |
J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.
doi: 10.1007/s00021-009-0017-y. |
[35] |
J. Zhang and F. Xie, Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics,, J. Differential Equations, 245 (2008), 1853.
doi: 10.1016/j.jde.2008.07.010. |
[36] |
Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 491.
doi: 10.1016/j.anihpc.2006.03.014. |
[37] |
Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field,, Nonlinear Anal., 72 (2010), 3643.
doi: 10.1016/j.na.2009.12.045. |
[38] |
Z. Xin, Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.
doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. |
[39] |
Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations,, to appear in Commun. Math. Phys., (2012).
doi: 10.1007/s00220-012-1610-0. |
show all references
References:
[1] |
D. Bian and B. Guo, Well-posedness in critical spaces for the full compressible MHD equations,, to appear in Acta Math. Sci. Ser. B, (2013). Google Scholar |
[2] |
D. Bian and B. Guo, Blow-up of smooth solutions to the compressible MHD equations,, to appear in Appl. Anal., (2013).
doi: 10.1080/00036811.2013.766324. |
[3] |
D. Bian and B. Yuan, Local well-posedness in critical spaces for compressible MHD equations,, submitted, (2010), 1. Google Scholar |
[4] |
D. Bian and B. Yuan, Well-posedness in super critical Besov spaces for compressible MHD equations,, Int. J. Dynamical Systems and Differential Equations, 3 (2011), 383.
doi: 10.1504/IJDSDE.2011.041882. |
[5] |
G.-Q. Chen and D. Wang, Global solution of nonlinear magnetohydrodynamics with large initial data,, J. Differemtial Equations, 182 (2002), 344.
doi: 10.1006/jdeq.2001.4111. |
[6] |
G.-Q. Chen and D. Wang, Existence and continuous dependence of large solutions for the magnetohydrodynamic equations,, Z. Angew. Math. Phys., 54 (2003), 608.
doi: 10.1007/s00033-003-1017-z. |
[7] |
Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations,, Nonlinear Anal., 72 (2010), 4438.
doi: 10.1016/j.na.2010.02.019. |
[8] |
S. Ding, H. Wen, L. Yao and C. Zhu, Global spherically symmetric classical solution to compressible Navier-Stokes equations with large initial data and vacuum,, SIAM J. Math. Anal., 44 (2012), 1257.
doi: 10.1137/110836663. |
[9] |
B. Ducomet and E. Feireisl, The equations of magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars,, Commun. Math. Phys., 226 (2006), 595.
doi: 10.1007/s00220-006-0052-y. |
[10] |
J. Fan, S. Jiang and G. Nakamura, Vanishing shear viscosity limit in the magnetohydrodynamic equations,, Commun. Math. Phys., 270 (2007), 691.
doi: 10.1007/s00220-006-0167-1. |
[11] |
E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, 26 (2004).
|
[12] |
E. Feireisl and H. Petzeltová, Large-time behavior of solutions to the Navier-Stokes equations of compressible flow,, Arch. Ration. Mech. Anal., 150 (1999), 77.
doi: 10.1007/s002050050181. |
[13] |
E. Feireisl, A. Novotný and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.
doi: 10.1007/PL00000976. |
[14] |
H. Freistühler and P. Szmolyan, Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves,, SIAM J. Math. Anal., 26 (1995), 112.
doi: 10.1137/S0036141093247366. |
[15] |
B. Guo and J. Zhang, Global existence of solution for thermally radiative magnetohydrodynamic equations with the displacement current,, J. Math. Phys., 54 (2013).
doi: 10.1063/1.4776205. |
[16] |
D. Hoff and E. Tsyganov, Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics,, Z. Angew. Math. Phys., 56 (2005), 791.
doi: 10.1007/s00033-005-4057-8. |
[17] |
X. Hu and D. Wang, Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows,, Arch. Rational Mech. Anal., 197 (2010), 203.
doi: 10.1007/s00205-010-0295-9. |
[18] |
S. Jiang and Q. Jiu, Global existence of solutions to the high-dimensional compressble insentropic Navier-Stokes equations with large initial data,, internal notes, (2006). Google Scholar |
[19] |
A. V. Kazhikhov and V. V. Shelukhin, Unique global solution with respect to time of initial-boundary-value problems for the one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.
doi: 10.1016/0021-8928(77)90011-9. |
[20] |
S. Kawashima and M. Okada, Smooth global solutions for the one-dimensional equations in magnetohydrodynamics,, Proc. Japan Acad. Ser. A Math. Sci., 58 (1982), 384.
doi: 10.3792/pjaa.58.384. |
[21] |
L. D. Laudau and E. M. Lifshitz, "Electrodynamics of Continuous Media,", Course of Theoretical Physics, (1960).
|
[22] |
X. Li, N. Su and D. Wang, Local strong solution to the compressible magnetohydrodynamic flow with large data,, J. Hyper. Differential Equations, 8 (2011), 415.
doi: 10.1142/S0219891611002457. |
[23] |
P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 1. Incompressible Models,", Oxford Lecture Series in Mathematics and its Applications, 3 (1996).
|
[24] |
P.-L. Lion, "Mathematics Topic in Fluid Mechanics. Vol. 2, Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, 10 (1998).
|
[25] |
T.-P. Liu and Y. Zeng, Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws,, Memoirs of the American Mathematical Society, 125 (1997).
|
[26] |
T.-P. Liu, Z. Xin and T. Yang, Vacuum states of compressible flows,, Discrete Contin. Dyn. Syst., 4 (1998), 1.
doi: 10.3934/dcds.1998.4.1. |
[27] |
T. Luo, Z. Xin and T. Yang, Interface behavior of compressible Navier-Stokes equations with vacuum,, SIAM. J. Math. Anal., 31 (1999), 1175.
doi: 10.1137/S0036141097331044. |
[28] |
H. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations,, J. Differential Equations, 248 (2010), 2275.
doi: 10.1016/j.jde.2009.11.031. |
[29] |
P. Maremonti, Existence and stability of time-periodic solutions to the Navier-Stokes equations in the whole space,, Nonlinearity, 4 (1991), 503.
doi: 10.1088/0951-7715/4/2/013. |
[30] |
X. Pu and B. Guo, Global existence and convergence rates of smooth solutions for the full compressible MHD equations,, to appear in Z. Angew. Math. Phys., (2012).
doi: 10.1007/s00033-012-0245-5. |
[31] |
S. N. Shore, "An Introduction to Atrophysical Hydrodynamics,", Academic Press, (1992). Google Scholar |
[32] |
D. Wang, Large solutions to the initial-boundary value problem for planar magnetohydrodynamics,, SIAM J. Appl. Math., 63 (2003), 1424.
doi: 10.1137/S0036139902409284. |
[33] |
J. Wu, Generalized MHD equations,, J. Differemtial Equations, 195 (2003), 284.
doi: 10.1016/j.jde.2003.07.007. |
[34] |
J. Wu, Global regularity for a class of generalized magnetohydrodynamic equations,, J. Math. Fluid Mech., 13 (2011), 295.
doi: 10.1007/s00021-009-0017-y. |
[35] |
J. Zhang and F. Xie, Global solution for a one-dimensional model problem in thermally radiative magnetohydrodynamics,, J. Differential Equations, 245 (2008), 1853.
doi: 10.1016/j.jde.2008.07.010. |
[36] |
Y. Zhou, Regularity criteria for the generalized viscous MHD equations,, Ann. I. H. Poincaré Anal. Non Linéaire, 24 (2007), 491.
doi: 10.1016/j.anihpc.2006.03.014. |
[37] |
Y. Zhou and S. Gala, A new regularity criterion for weak solutions to the viscous MHD equations in terms of the vorticity field,, Nonlinear Anal., 72 (2010), 3643.
doi: 10.1016/j.na.2009.12.045. |
[38] |
Z. Xin, Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density,, Comm. Pure Appl. Math., 51 (1998), 229.
doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C. |
[39] |
Z. Xin and W. Yan, On blowup of classical solutions to the compressible Navier-Stokes equations,, to appear in Commun. Math. Phys., (2012).
doi: 10.1007/s00220-012-1610-0. |
[1] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[2] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[3] |
José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091 |
[4] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[5] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[6] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[7] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[8] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[9] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[10] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[11] |
Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112 |
[12] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[13] |
Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051 |
[14] |
Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439 |
[15] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[16] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[17] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[18] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
[19] |
Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326 |
[20] |
Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations & Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]