2014, 7(2): 205-218. doi: 10.3934/krm.2014.7.205

Non-existence and non-uniqueness for multidimensional sticky particle systems

1. 

Department of Mathematics, Penn State University, University Park, Pa.16802

2. 

Department of Mathematics, University of Akron, Akron, OH 44325, United States

Received  December 2013 Revised  February 2014 Published  March 2014

The paper is concerned with sticky weak solutions to the equations of pressureless gases in two or more space dimensions. Various initial data are constructed, showing that the Cauchy problem can have (i) two distinct sticky solutions, or (ii) no sticky solution, not even locally in time. In both cases the initial density is smooth with compact support, while the initial velocity field is continuous.
Citation: Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic & Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205
References:
[1]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness,, Comm. Part. Diff. Eq., 24 (1999), 2173. doi: 10.1080/03605309908821498.

[2]

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions,, J. Math. Pures Appl., 99 (2013), 577. doi: 10.1016/j.matpur.2012.09.013.

[3]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws,, SIAM J. Numer. Anal., 35 (1998), 2317. doi: 10.1137/S0036142997317353.

[4]

W. E, Yu. Rykov and Y. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics,, Comm. Math. Phys., 177 (1996), 349. doi: 10.1007/BF02101897.

[5]

F. Huang and Z. Wang, Well posedness for pressureless flow,, Comm. Math. Phys., 222 (2001), 117. doi: 10.1007/s002200100506.

[6]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340. doi: 10.1137/090750809.

[7]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws,, SIAM J. Math. Anal., 40 (2008), 754. doi: 10.1137/070704459.

[8]

T. Nguyen and A. Tudorascu, One-dimensional pressureless gas systems with/without viscosity,, preprint, (2013).

[9]

M. Sever, An existence theorem in the large for zero-pressure gas dynamics,, Diff. Integral Equat., 14 (2001), 1077.

[10]

Y. B. Zeldovich, Gravitational instability: An approximate theory for large density perturbations,, Astro. & Astrophys., 5 (1970), 84.

show all references

References:
[1]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness,, Comm. Part. Diff. Eq., 24 (1999), 2173. doi: 10.1080/03605309908821498.

[2]

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions,, J. Math. Pures Appl., 99 (2013), 577. doi: 10.1016/j.matpur.2012.09.013.

[3]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws,, SIAM J. Numer. Anal., 35 (1998), 2317. doi: 10.1137/S0036142997317353.

[4]

W. E, Yu. Rykov and Y. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics,, Comm. Math. Phys., 177 (1996), 349. doi: 10.1007/BF02101897.

[5]

F. Huang and Z. Wang, Well posedness for pressureless flow,, Comm. Math. Phys., 222 (2001), 117. doi: 10.1007/s002200100506.

[6]

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system,, SIAM J. Math. Anal., 41 (2009), 1340. doi: 10.1137/090750809.

[7]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws,, SIAM J. Math. Anal., 40 (2008), 754. doi: 10.1137/070704459.

[8]

T. Nguyen and A. Tudorascu, One-dimensional pressureless gas systems with/without viscosity,, preprint, (2013).

[9]

M. Sever, An existence theorem in the large for zero-pressure gas dynamics,, Diff. Integral Equat., 14 (2001), 1077.

[10]

Y. B. Zeldovich, Gravitational instability: An approximate theory for large density perturbations,, Astro. & Astrophys., 5 (1970), 84.

[1]

Yingshu Lü. Symmetry and non-existence of solutions to an integral system. Communications on Pure & Applied Analysis, 2018, 17 (3) : 807-821. doi: 10.3934/cpaa.2018041

[2]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[3]

Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1125-1141. doi: 10.3934/dcds.2016.36.1125

[4]

Fuqin Sun, Mingxin Wang. Non-existence of global solutions for nonlinear strongly damped hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 949-958. doi: 10.3934/dcds.2005.12.949

[5]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[6]

Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks & Heterogeneous Media, 2013, 8 (2) : 433-463. doi: 10.3934/nhm.2013.8.433

[7]

Keisuke Matsuya, Tetsuji Tokihiro. Existence and non-existence of global solutions for a discrete semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 209-220. doi: 10.3934/dcds.2011.31.209

[8]

Elias M. Guio, Ricardo Sa Earp. Existence and non-existence for a mean curvature equation in hyperbolic space. Communications on Pure & Applied Analysis, 2005, 4 (3) : 549-568. doi: 10.3934/cpaa.2005.4.549

[9]

Shu-Yu Hsu. Non-existence and behaviour at infinity of solutions of some elliptic equations. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 769-786. doi: 10.3934/dcds.2004.10.769

[10]

Ivan Landjev, Assia Rousseva. The non-existence of $(104,22;3,5)$-arcs. Advances in Mathematics of Communications, 2016, 10 (3) : 601-611. doi: 10.3934/amc.2016029

[11]

J. F. Toland. Non-existence of global energy minimisers in Stokes waves problems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3211-3217. doi: 10.3934/dcds.2014.34.3211

[12]

Matthieu Brassart. Non-critical fractional conservation laws in domains with boundary. Networks & Heterogeneous Media, 2016, 11 (2) : 251-262. doi: 10.3934/nhm.2016.11.251

[13]

Yong Jung Kim, Wei-Ming Ni, Masaharu Taniguchi. Non-existence of localized travelling waves with non-zero speed in single reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3707-3718. doi: 10.3934/dcds.2013.33.3707

[14]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[15]

Peter Müller, Gábor P. Nagy. On the non-existence of sharply transitive sets of permutations in certain finite permutation groups. Advances in Mathematics of Communications, 2011, 5 (2) : 303-308. doi: 10.3934/amc.2011.5.303

[16]

Jérôme Coville, Nicolas Dirr, Stephan Luckhaus. Non-existence of positive stationary solutions for a class of semi-linear PDEs with random coefficients. Networks & Heterogeneous Media, 2010, 5 (4) : 745-763. doi: 10.3934/nhm.2010.5.745

[17]

Denis S. Krotov, Patric R. J.  Östergård, Olli Pottonen. Non-existence of a ternary constant weight $(16,5,15;2048)$ diameter perfect code. Advances in Mathematics of Communications, 2016, 10 (2) : 393-399. doi: 10.3934/amc.2016013

[18]

Luca Rossi. Non-existence of positive solutions of fully nonlinear elliptic equations in unbounded domains. Communications on Pure & Applied Analysis, 2008, 7 (1) : 125-141. doi: 10.3934/cpaa.2008.7.125

[19]

Bilgesu A. Bilgin, Varga K. Kalantarov. Non-existence of global solutions to nonlinear wave equations with positive initial energy. Communications on Pure & Applied Analysis, 2018, 17 (3) : 987-999. doi: 10.3934/cpaa.2018048

[20]

Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]