Citation: |
[1] |
F. Andreu, V. Caselles, J. M. Mazon and S. Moll, A diffusion equation intransparent media, J. Evol. Equ., 7 (2007), 113-143.doi: 10.1007/s00028-007-0249-3. |
[2] |
A. M. Anile, S. Pennisi and M. Sammartino, A thermodynamical approach to Eddington factors, J. Math. Phys., 32 (1991), 544-550.doi: 10.1063/1.529391. |
[3] |
K. Beauchard and E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems, Arch. Ration. Mech. Anal., 199 (2011), 177-227.doi: 10.1007/s00205-010-0321-y. |
[4] |
C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M1 model of radiative transfer in two space dimensions, J. Sci. Comput., 31 (2007), 347-389.doi: 10.1007/s10915-006-9108-6. |
[5] |
S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Commun. Pure Appl. Math., 60 (2007), 1559-1622.doi: 10.1002/cpa.20195. |
[6] |
L. L. Bonilla, T. Götz, A. Klar, N. Marheineke and R. Wegener, Hydrodynamic limit of a Fokker-Planck equation describing fiber lay-down processes, SIAM J. Appl. Math., 68 (2007), 648-665.doi: 10.1137/070692728. |
[7] |
L. L. Bonilla, A. Klar and S. Martin, Higher order averaging of linear Fokker-Planck equations with periodic forcing, SIAM J. Appl. Math., 72 (2012), 1315-1342.doi: 10.1137/11083959X. |
[8] |
T. A. Brunner and J. P. Holloway, One-dimensional Riemann solvers and the maximum entropy closure, J. Quant. Spectrosc. Radiat. Transfer, 69 (2001), 543-566. |
[9] |
J. A. Carrillo, V. Caselles and S. Moll, On the relativistic heat equation in one space dimension, Proc. London Math. Soc., 107 (2013), 1395-1423.doi: 10.1112/plms/pdt015. |
[10] |
I. L. Chern, Long-time effect of relaxation for hyperbolic conservation laws, Commun. Math. Phys., 172 (1995), 39-55.doi: 10.1007/BF02104510. |
[11] |
B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35 (1998), 2440-2463.doi: 10.1137/S0036142997316712. |
[12] |
J. F. Coulombel, F. Golse and T. Goudon, Diffusion approximation and entropy based moment closure for kinetic equations, Asymptot. Anal., 45 (2005), 1-39. |
[13] |
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.doi: 10.1142/S0218202508003005. |
[14] |
P. Degond, C. Appert-Rolland, M. Moussaid, J. Pettre and G. Theraulaz, A hierarchy of heuristic-based models of crowd dynamics, J. Stat. Phys., 152 (2013), 1033-1068.doi: 10.1007/s10955-013-0805-x. |
[15] |
L. Desvilettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Comm. Pure Appl. Math., 54 (2001), 1-42.doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q. |
[16] |
J. Dolbeault, A. Klar, C. Mouhot and C. Schmeiser, Hypocoercivity and a Fokker-Planck equation for fiber lay-down, Applied Mathematical Research Express, (2013), 165-175. |
[17] |
J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity, to appear in TAMS 2014. |
[18] |
B. Dubroca and J. L. Feugeas, Entropic moment closure hierarchy for the radiative transfer equation, C. R. Acad. Sci. Paris Ser. I, 329 (1999), 915-920.doi: 10.1016/S0764-4442(00)87499-6. |
[19] |
B. Dubroca and A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys., 180 (2002), 584-596.doi: 10.1006/jcph.2002.7106. |
[20] |
M. Frank, B. Dubroca and A. Klar, Partial moment entropy approximation to radiative transfer, J. Comput. Phys., 218 (2006), 1-18.doi: 10.1016/j.jcp.2006.01.038. |
[21] |
M. Grothaus, A. Klar, J. Maringer and P. Stilgenbauer, Geometry, mixing, properties and hypocoercivity of a degenerate diffusion arising in technical textile industry, arXiv:1203.4502. |
[22] |
T. Götz, A. Klar, N. Marheineke and R. Wegener, A stochastic model for the fiber lay-down process in the nonwoven production, SIAM J. Appl. Math., 67 (2007), 1704-1717.doi: 10.1137/06067715X. |
[23] |
A. Klar, N. Marheineke and R. Wegener, Hierarchy of mathematical models for production processes of technical textiles, ZAMM Z. Angew. Math. Mech., 89 (2009), 941-961.doi: 10.1002/zamm.200900282. |
[24] |
A. Klar, J. Maringer and R. Wegener, A 3D model for fiber lay-down processes in non-woven production processes, Math. Models Methods Appl. Sci., 22 (2012), 1250020, 18 pp.doi: 10.1142/S0218202512500200. |
[25] |
P. E. Klöden and P. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1999. |
[26] |
A. Klar and O. Tse, An entropy functional and explicit decay rates for a partially dissipative hyperbolic system, to appear in ZAMM Z. Angew. Math. Mech., 2014. |
[27] |
C. D. Levermore, Relating Eddington factors to flux limiters, J. Quant. Spectrosc. Radiat. Transf., 31 (1984), 149-160.doi: 10.1016/0022-4073(84)90112-2. |
[28] |
T. Luo, R. Natalini and Z. Xin, Large time behaviour of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1999), 810-830.doi: 10.1137/S0036139996312168. |
[29] |
G. Papanicolaou, D. Stroock and S. Varadhan, Martingale Approach to Some Limit Theorems, in Statistical Mechanics and Dynamical Systems (ed. D. Ruelle), Duke University Mathematics Series III, Durham, 1977. |
[30] |
H. Risken, The Fokker-Planck Equation, Springer, 1989.doi: 10.1007/978-3-642-61544-3. |
[31] |
A. Roth, A. Klar, B. Simeon and E. Zharovsky, A semi-Lagrangian finite volume method for 3-D Fokker-Planck equations associated to stochastic dynamical systems on the sphere, to appear in J. Sci. Comput., 2014. |
[32] |
T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen and O. Shochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.doi: 10.1103/PhysRevLett.75.1226. |
[33] |
C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), iv+141 pp.doi: 10.1090/S0065-9266-09-00567-5. |