\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On a regularized system of self-gravitating particles

Abstract / Introduction Related Papers Cited by
  • We consider a regularized macroscopic model describing a system of self-gravitating particles. We study the existence and uniqueness of nonnegative stationary solutions and allude the differences to results obtained from classical gravitational models. The system is analyzed on a convex, bounded domain up to three spatial dimensions, subject to Neumann boundary conditions for the particle density, and Dirichlet boundary condition for the self-interacting potential. Finally, we show numerical simulations underlining our analytical results.
    Mathematics Subject Classification: Primary: 35D30, 35J57; Secondary: 76Y05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Ben Abdallah and A. Unterreiter, On the stationary quantum drift diffusion model, Z. angew. Math. Phys., 49 (1998), 251-275.doi: 10.1007/s000330050218.

    [2]

    C. Bennett and R. C. Sharpley, Interpolation of Operators, Pure and Applied Mathematics, Vol. 129, Academic Press, Boston, 1988.

    [3]

    P. Biler and T. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interaction of particles, I, Colloq. Math., 66 (1994), 319-334.

    [4]

    E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, Comm. Math. Phys., 143 (1992), 501-525.doi: 10.1007/BF02099262.

    [5]

    E. Caglioti, P. L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for two-dimensional Euler equations: A statistical mechanics description, II, Comm. Math. Phys., 174 (1995), 229-260.doi: 10.1007/BF02099602.

    [6]

    D. Cassani, B. Ruf and C. Tarsi, Best constants in a borderline case of second-order Moser type inequalities, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 73-93.doi: 10.1016/j.anihpc.2009.07.006.

    [7]

    A. Dall'Aglio, D. Giachetti and J. -P. Puel, Nonlinear elliptic equations with natural growth in general domains, Ann. Mat. Pura Appl., 181 (2002), 407-426.doi: 10.1007/s102310100046.

    [8]

    V. Ferone, M. R. Posteraro and J. M. Rakotoson, $L^\infty$-estimates for nonlinear elliptic problems with $p$-growth in the gradient, J. Inequal. Appl., 3 (1999), 109-125.doi: 10.1155/S1025583499000077.

    [9]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-3-642-61798-0.

    [10]

    A. Jüngel and R. Pinnau, Global nonnegative solutions of a nonlinear fourth-order parabolic equation for quantum systems, SIAM J. Math. Anal, 32 (2000), 760-777.doi: 10.1137/S0036141099360269.

    [11]

    D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics, Vol. 88, Academic Press, New York, 1980.

    [12]

    J. Leray and J. L. Lions, Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, (French) [Some results of Višik on nonlinear elliptic problems by the methods of Minty-Browder], Bull. Soc. Math. France, 93 (1965), 97-107.

    [13]

    M. Montenegro and M. Montenegro, Existence and nonexistence of solutions for quasilinear elliptic equations, J. Math. Anal. Appl., 245 (2000), 303-316.doi: 10.1006/jmaa.1999.6697.

    [14]

    J. Moser, A sharp form of an inequality by N. Trudinger, Indiana. Univ. Math. J., 20 (1971), 1077-1092.

    [15]

    R. Pinnau and A. Unterreiter, The stationary current-voltage characteristics of the quantum drift-diffusion model, SIAM J. Numer. Anal., 37 (1999), 211-245.doi: 10.1137/S0036142998341039.

    [16]

    T. Suzuki, Free Energy and Self-Interacting Particles, Progress in Nonlinear Differential Equations and their Applications, Vol. 62, Birkhäuser, Boston, 2005.doi: 10.1007/0-8176-4436-9.

    [17]

    O. Tse, On the effects of the Bohm potential on a macroscopic system of self-interacting particles, J. Math. Anal. Appl., 418 (2014), 796-811.doi: 10.1016/j.jmaa.2014.04.021.

    [18]

    J. Winter, Wigner transformation in curved space-time and the curvature correction of the Vlasov equation for semiclassical gravitating systems, Phys. Rev. D, 32 (1985), 1871-1888.doi: 10.1103/PhysRevD.32.1871.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return