• Previous Article
    Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation
  • KRM Home
  • This Issue
  • Next Article
    Stability of solutions of kinetic equations corresponding to the replicator dynamics
2014, 7(1): 79-108. doi: 10.3934/krm.2014.7.79

Long time asymptotics of a degenerate linear kinetic transport equation

1. 

IMPAN, ul. Śniadeckich 8, 00-956 Warsaw, Poland

Received  January 2013 Revised  June 2013 Published  December 2013

In the present article we prove an algebraic rate of decay towards the equilibrium for the solution of a non-homogeneous, linear kinetic transport equation. The estimate is of the form $C(1+t)^{-a}$ for some $a>0$. The total scattering cross-section $R(k)$ is allowed to degenerate but we assume that $R^{-a}(k)$ is integrable with respect to the invariant measure.
Citation: Tomasz Komorowski. Long time asymptotics of a degenerate linear kinetic transport equation. Kinetic & Related Models, 2014, 7 (1) : 79-108. doi: 10.3934/krm.2014.7.79
References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,, Tenth priniting, (1972).

[2]

K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas,, Kinet. Relat. Models, 4 (2011), 87. doi: 10.3934/krm.2011.4.87.

[3]

L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation,, Arch. Rat. Mech. Anal., 103 (1988), 151. doi: 10.1007/BF00251506.

[4]

C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials,, Rev. Mat. Iberoamericana, 21 (2005), 819. doi: 10.4171/RMI/436.

[5]

A. Bensoussan, J-L. Lions and G. C. Papanicolaou, Boundary layers and homogenization of transport processes,, Publ. Res. Inst. Math. Sci., 15 (1979), 53. doi: 10.2977/prims/1195188427.

[6]

M. Caceres, J. Carrillo and T. Goudon, Equilibration Rate for the Linear Inhomogeneous Relaxation-Time Boltzmann Equation for Charged Particles,, Comm in PDE, 28 (2003), 969. doi: 10.1081/PDE-120021182.

[7]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro- reversible processes,, Indiana Univ. Math. J., 49 (2000), 1175.

[8]

L. Desvillettes and S. Salvarani, Asymptotic behavior of degenerate linear transport equations,, Bull. Sci. Math., 133 (2009), 848. doi: 10.1016/j.bulsci.2008.09.001.

[9]

L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation,, Comm. Pure Appl. Math., 54 (2001), 1. doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.

[10]

L. Desvillettes and C. Villani, Rate of convergence toward the equilibrium in degenerate settings,, "WASCOM 2003'', (2003), 153. doi: 10.1142/9789812702937_0020.

[11]

G. Doetsch, Introduction to the theory and application of the Laplace transform,, Translated from the second German edition by Walter Nader. Springer-Verlag, (1974).

[12]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass,, available at , (2010).

[13]

R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations,, Nonlinearity, 24 (2011), 2165. doi: 10.1088/0951-7715/24/8/003.

[14]

N. Dunford and J. T. Schwartz, Linear Operators. Part I,, General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley & Sons, (1958).

[15]

K. Engel and R. Nagel, One-Parameter Semigroups for linear Evolution Equations,, Graduate Texts in Mathematics, 194 (2000).

[16]

S. Ethier and T. Kurtz, Markov Processes,, Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley & Sons, (1986). doi: 10.1002/9780470316658.

[17]

S. R. Foguel, The Ergodic Theory of Markov processes,, Van Nostrand Mathematical Studies, (1969).

[18]

Y. Katznelson, An Introduction to Harmonic Analysis,, Third edition. Cambridge Mathematical Library. Cambridge University Press, (2004).

[19]

P. D. Lax, Functional Analysis,, Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], (2002).

[20]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations,, Arch. Rat. Mech. Anal., 199 (2011), 493. doi: 10.1007/s00205-010-0354-2.

[21]

W. R. Rudin, Principles of Mathematical Analysis,, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., (1976).

[22]

W. R. Rudin, Real and Complex Analysis,, Third Edition, (1987).

[23]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions., Princeton Mathematical Series, 30 (1970).

[24]

T. Tsuji, K. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall,, J. Stat Phys, 140 (2010), 518. doi: 10.1007/s10955-010-9997-5.

[25]

S. Ukai, On the existence of global solutions of mixed problems for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179. doi: 10.3792/pja/1195519027.

[26]

A. C. Zaanen, Integration. Completely Revised Edition of An Introduction to the Theory of Integration,, North-Holland Publishing Co., (1967).

[27]

F. Zhang, Matrix Theory Basic Results and Techniques,, Second Ed. Universitext, (2011). doi: 10.1007/978-1-4614-1099-7.

show all references

References:
[1]

M. Abramowitz and I. Stegun, Handbook of Mathematical Functions,, Tenth priniting, (1972).

[2]

K. Aoki and F. Golse, On the speed of approach to equilibrium for a collisionless gas,, Kinet. Relat. Models, 4 (2011), 87. doi: 10.3934/krm.2011.4.87.

[3]

L. Arkeryd, Stability in $L^1$ for the spatially homogeneous Boltzmann equation,, Arch. Rat. Mech. Anal., 103 (1988), 151. doi: 10.1007/BF00251506.

[4]

C. Baranger and C. Mouhot, Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials,, Rev. Mat. Iberoamericana, 21 (2005), 819. doi: 10.4171/RMI/436.

[5]

A. Bensoussan, J-L. Lions and G. C. Papanicolaou, Boundary layers and homogenization of transport processes,, Publ. Res. Inst. Math. Sci., 15 (1979), 53. doi: 10.2977/prims/1195188427.

[6]

M. Caceres, J. Carrillo and T. Goudon, Equilibration Rate for the Linear Inhomogeneous Relaxation-Time Boltzmann Equation for Charged Particles,, Comm in PDE, 28 (2003), 969. doi: 10.1081/PDE-120021182.

[7]

P. Degond, T. Goudon and F. Poupaud, Diffusion limit for nonhomogeneous and non-micro- reversible processes,, Indiana Univ. Math. J., 49 (2000), 1175.

[8]

L. Desvillettes and S. Salvarani, Asymptotic behavior of degenerate linear transport equations,, Bull. Sci. Math., 133 (2009), 848. doi: 10.1016/j.bulsci.2008.09.001.

[9]

L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation,, Comm. Pure Appl. Math., 54 (2001), 1. doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q.

[10]

L. Desvillettes and C. Villani, Rate of convergence toward the equilibrium in degenerate settings,, "WASCOM 2003'', (2003), 153. doi: 10.1142/9789812702937_0020.

[11]

G. Doetsch, Introduction to the theory and application of the Laplace transform,, Translated from the second German edition by Walter Nader. Springer-Verlag, (1974).

[12]

J. Dolbeault, C. Mouhot and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass,, available at , (2010).

[13]

R. Duan, Hypocoercivity of linear degenerately dissipative kinetic equations,, Nonlinearity, 24 (2011), 2165. doi: 10.1088/0951-7715/24/8/003.

[14]

N. Dunford and J. T. Schwartz, Linear Operators. Part I,, General theory. With the assistance of William G. Bade and Robert G. Bartle. Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication. Wiley & Sons, (1958).

[15]

K. Engel and R. Nagel, One-Parameter Semigroups for linear Evolution Equations,, Graduate Texts in Mathematics, 194 (2000).

[16]

S. Ethier and T. Kurtz, Markov Processes,, Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley & Sons, (1986). doi: 10.1002/9780470316658.

[17]

S. R. Foguel, The Ergodic Theory of Markov processes,, Van Nostrand Mathematical Studies, (1969).

[18]

Y. Katznelson, An Introduction to Harmonic Analysis,, Third edition. Cambridge Mathematical Library. Cambridge University Press, (2004).

[19]

P. D. Lax, Functional Analysis,, Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], (2002).

[20]

A. Mellet, S. Mischler and C. Mouhot, Fractional diffusion limit for collisional kinetic equations,, Arch. Rat. Mech. Anal., 199 (2011), 493. doi: 10.1007/s00205-010-0354-2.

[21]

W. R. Rudin, Principles of Mathematical Analysis,, Third edition. International Series in Pure and Applied Mathematics. McGraw-Hill Book Co., (1976).

[22]

W. R. Rudin, Real and Complex Analysis,, Third Edition, (1987).

[23]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions., Princeton Mathematical Series, 30 (1970).

[24]

T. Tsuji, K. Aoki and F. Golse, Relaxation of a free-molecular gas to equilibrium caused by interaction with vessel wall,, J. Stat Phys, 140 (2010), 518. doi: 10.1007/s10955-010-9997-5.

[25]

S. Ukai, On the existence of global solutions of mixed problems for non-linear Boltzmann equation,, Proc. Japan Acad., 50 (1974), 179. doi: 10.3792/pja/1195519027.

[26]

A. C. Zaanen, Integration. Completely Revised Edition of An Introduction to the Theory of Integration,, North-Holland Publishing Co., (1967).

[27]

F. Zhang, Matrix Theory Basic Results and Techniques,, Second Ed. Universitext, (2011). doi: 10.1007/978-1-4614-1099-7.

[1]

Wolfgang Wagner. Some properties of the kinetic equation for electron transport in semiconductors. Kinetic & Related Models, 2013, 6 (4) : 955-967. doi: 10.3934/krm.2013.6.955

[2]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[3]

Yin Yang, Yunqing Huang. Spectral Jacobi-Galerkin methods and iterated methods for Fredholm integral equations of the second kind with weakly singular kernel. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 685-702. doi: 10.3934/dcdss.2019043

[4]

Pedro Teixeira. Dacorogna-Moser theorem on the Jacobian determinant equation with control of support. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4071-4089. doi: 10.3934/dcds.2017173

[5]

Alfredo Lorenzi, Eugenio Sinestrari. Identifying a BV-kernel in a hyperbolic integrodifferential equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1199-1219. doi: 10.3934/dcds.2008.21.1199

[6]

Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations & Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681

[7]

Proscovia Namayanja. Chaotic dynamics in a transport equation on a network. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3415-3426. doi: 10.3934/dcdsb.2018283

[8]

Indranil Biswas, Georg Schumacher, Lin Weng. Deligne pairing and determinant bundle. Electronic Research Announcements, 2011, 18: 91-96. doi: 10.3934/era.2011.18.91

[9]

Philippe Laurençot, Barbara Niethammer, Juan J.L. Velázquez. Oscillatory dynamics in Smoluchowski's coagulation equation with diagonal kernel. Kinetic & Related Models, 2018, 11 (4) : 933-952. doi: 10.3934/krm.2018037

[10]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[11]

Marek Fila, Kazuhiro Ishige, Tatsuki Kawakami. Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1285-1301. doi: 10.3934/cpaa.2012.11.1285

[12]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[13]

Kazuhiro Ishige, Tatsuki Kawakami, Kanako Kobayashi. Global solutions for a nonlinear integral equation with a generalized heat kernel. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 767-783. doi: 10.3934/dcdss.2014.7.767

[14]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[15]

Jorge Clarke, Christian Olivera, Ciprian Tudor. The transport equation and zero quadratic variation processes. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2991-3002. doi: 10.3934/dcdsb.2016083

[16]

Alexander Bobylev, Raffaele Esposito. Transport coefficients in the $2$-dimensional Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 789-800. doi: 10.3934/krm.2013.6.789

[17]

Bertram Düring, Ansgar Jüngel, Lara Trussardi. A kinetic equation for economic value estimation with irrationality and herding. Kinetic & Related Models, 2017, 10 (1) : 239-261. doi: 10.3934/krm.2017010

[18]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic & Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[19]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[20]

Shengfan Zhou, Jinwu Huang, Xiaoying Han. Compact kernel sections for dissipative non-autonomous Zakharov equation on infinite lattices. Communications on Pure & Applied Analysis, 2010, 9 (1) : 193-210. doi: 10.3934/cpaa.2010.9.193

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]