\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Non-local kinetic and macroscopic models for self-organised animal aggregations

Abstract / Introduction Related Papers Cited by
  • The last two decades have seen a surge in kinetic and macroscopic models derived to investigate the multi-scale aspects of self-organised biological aggregations. Because the individual-level details incorporated into the kinetic models (e.g., individual speeds and turning rates) make them somewhat difficult to investigate, one is interested in transforming these models into simpler macroscopic models, by using various scaling techniques that are imposed by the biological assumptions of the models. However, not many studies investigate how the dynamics of the initial models are preserved via these scalings. Here, we consider two scaling approaches (parabolic and grazing collision limits) that can be used to reduce a class of non-local 1D and 2D models for biological aggregations to simpler models existent in the literature. Then, we investigate how some of the spatio-temporal patterns exhibited by the original kinetic models are preserved via these scalings. To this end, we focus on the parabolic scaling for non-local 1D models and apply asymptotic preserving numerical methods, which allow us to analyse changes in the patterns as the scaling coefficient $\epsilon$ is varied from $\epsilon=1$ (for 1D transport models) to $\epsilon=0$ (for 1D parabolic models). We show that some patterns (describing stationary aggregations) are preserved in the limit $\epsilon\to 0$, while other patterns (describing moving aggregations) are lost. To understand the loss of these patterns, we construct bifurcation diagrams.
    Mathematics Subject Classification: Primary: 35L40, 35L65, 35K55, 92B99; Secondary: 82C40, 65M06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. D. Angelis and B. Lods, On the kinetic theory for active particles: A model for tumor-immune system competition, Math. Comp. Model., 47 (2008), 196-209.doi: 10.1016/j.mcm.2007.02.016.

    [2]

    A. Arnold, J. A. Carrillo, I. Gamba and C.-w. Shu, Low and high field scaling limits for the vlasov- and wigner-poisson-fokker-planck systems, Transp. Theory Stat. Phys., 30 (2001), 121-153.doi: 10.1081/TT-100105365.

    [3]

    A. Barbaro and P. Degond, Phase transition and diffusion among socially interacting self-propelled agents, Discrete Cont Dyn Syst B., 19 (2014), 1249-1278.

    [4]

    M. Beekman, D. J. T. Sumpter and F. L. W. Ratnieks, Phase transitions between disordered and ordered foraging in pharaoh's ants, Proc. Natl. Acad. Sci., 98 (2001), 9703-9706.doi: 10.1073/pnas.161285298.

    [5]

    N. Bellomo, E. D. Angelis and L. Preziosi, Multiscale modeling and mathematical problems related to tumor evolution and medical therapy, Journal of Theoretical Medicine, 5 (2003), 111-136.doi: 10.1080/1027336042000288633.

    [6]

    N. Bellomo, A. Bellouquid, J. Nieto and J.Soler, Multicellular biological growing systems: Hyperbolic limits towards macroscopic description, Math Models Appl. Sci., 17 (2007), 1675-1692.doi: 10.1142/S0218202507002431.

    [7]

    N. Bellomo, C. Bianca and M. Delitala, Complexity analysis and mathematical tools towards the modelling of living systems, Physics of Life Reviews, 6 (2009), 144-175.doi: 10.1016/j.plrev.2009.06.002.

    [8]

    M. G. Bertotti and M. Delitala, Conservation laws and asymptotic behavior of a model of social dynamics, Nonlinear Analysis RWA, 9 (2008), 183-196.doi: 10.1016/j.nonrwa.2006.09.012.

    [9]

    A. L. Bertozzi, J. A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity, 22 (2009), 683-710.doi: 10.1088/0951-7715/22/3/009.

    [10]

    A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions, Electron J. Diff. Eq., 44 (2006), 1-33 (electronic).

    [11]

    M. Bodnar and J. J. L. Velazquez, Derivation of macroscopic equations for individual cell-based models: A formal approach, Math. Meth. Appl. Sci., 28 (2005), 1757-1779.doi: 10.1002/mma.638.

    [12]

    R. Breitwisch and G. Whitesides, {Directionality of singing and non-singing behaviour of mated and unmated Northern Mockingbirds, Mimus polyglottos}, Anim. Behav., 35 (1987), 331-339.

    [13]

    J. Buhl, D. J. T. Sumpter, I. D. Couzin, J. J. Hale, E. Despland, E. R. Miller and S. J. Simpson, From disorder to order in marching locusts, Science, 312 (2006), 1402-1406.doi: 10.1126/science.1125142.

    [14]

    P.-L. Buono and R. Eftimie, Analysis of Hopf/Hopf bifurcations in nonlocal hyperbolic models for self-organised aggregations, Math. Models Methods Appl. Sci., 24 (2014), 327-357.doi: 10.1142/S0218202513400101.

    [15]

    P.-L. Buono and R. Eftimie, Codimension-two bifurcations in animal aggregation models with symmetry, SIAM J. Appl. Dyn. Syst., 13 (2014), 1542-1582.doi: 10.1137/130932272.

    [16]

    P.-L. Buono and R. Eftimie, Symmetries and pattern formation in hyperbolic versus parabolic models for self-organised aggregations, J. Math. Biol., (2014), 1-35.doi: 10.1007/s00285-014-0842-3.

    [17]

    M. Burger, V. Capasso and D. Morale, On an aggregation model with long and short range interactions, Nonlinear Analysis RWA, 8 (2007), 939-958.doi: 10.1016/j.nonrwa.2006.04.002.

    [18]

    J. A. Carrillo, M. R. D'Orsogna and V. Panferov, Double milling in self-propelled swarms from kinetic theory, Kinetic and Related Models, 2 (2009), 363-378.doi: 10.3934/krm.2009.2.363.

    [19]

    J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.doi: 10.1137/090757290.

    [20]

    J. A. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modelling of Collective Behavior in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi and G. Toscani), Model. Simul. Sci. Eng. Technol., Birkhäuser Boston, Inc., Boston, MA, 2010, 297-336.doi: 10.1007/978-0-8176-4946-3_12.

    [21]

    J. A. Carrillo, T. Goudon, P. Lafitte and F. Vecil, Numerical schemes of diffusion asymptotics and moment closures for kinetic equations, J. Sci. Comput., 36 (2008), 113-149.doi: 10.1007/s10915-007-9181-5.

    [22]

    J. A. Carrillo, Y. Huang and S. Martin, Explicit flock solutions for quasi-morse potentials, European J. Appl. Math., 25 (2014), 553-578.doi: 10.1017/S0956792514000126.

    [23]

    J. A. Carrillo, A. Klar, S. Martin and S. Tiwari, Self-propelled interacting particle systems with roosting force, Math. Models Methods Appl. Sci., 20 (2010), 1533-1552.doi: 10.1142/S0218202510004684.

    [24]

    J. A. Carrillo and B. Yan, An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis, Multiscale Model. Simul., 11 (2013), 336-361.doi: 10.1137/110851687.

    [25]

    A. Chertock, A. Kurganov, A. Polizzi and I. Timofeyev, Pedestrian flow models with slowdown interactions, Math Models Methods Appl. Sci., 24 (2014), 249-275.doi: 10.1142/S0218202513400083.

    [26]

    Y.-L. Chuang, M. R. D'Orsogna, D. Marthaler, A. L. Bertozzi and L. S. Chayes, State transitions and the continuum limit for a 2d interactiong, self-propelled particle system, Physica D, 232 (2007), 33-47.doi: 10.1016/j.physd.2007.05.007.

    [27]

    P. Degond, G. Dimarco and T. Mac, Hydrodynamics of the Kuramoto-Vicsek model of rotating self-propelled particles, Math Models Appl. Sci., 24 (2014), 277-325.doi: 10.1142/S0218202513400095.

    [28]

    P. Degond and S. Motsch, Macroscopic limit of self-driven particles with orientation interaction, C.R. Acad. Sci. Paris Ser. I, 345 (2007), 555-560.doi: 10.1016/j.crma.2007.10.024.

    [29]

    P. Degond and S. Motsch, Large scale dynamics of the persistent turning awlker model of fish behaviour, J. Stat. Phys., 131 (2008), 989-1021.doi: 10.1007/s10955-008-9529-8.

    [30]

    R. Eftimie, Modeling Group Formation and Activity Patterns in Self-Organizing Communities of Organisms, PhD thesis, University of Alberta, 2008.

    [31]

    R. Eftimie, Hyperbolic and kinetic models for self-organized biological aggregations and movement: A brief review, J. Math. Biol., 65 (2012), 35-75.doi: 10.1007/s00285-011-0452-2.

    [32]

    R. Eftimie, G. de Vries and M. A. Lewis, Complex spatial group patterns result from different animal communication mechanisms, Proc. Natl. Acad. Sci., 104 (2007), 6974-6979.doi: 10.1073/pnas.0611483104.

    [33]

    R. Eftimie, G. de Vries, M. A. Lewis and F. Lutscher, Modeling group formation and activity patterns in self-organizing collectives of individuals, Bull. Math. Biol., 69 (2007), 1537-1565.doi: 10.1007/s11538-006-9175-8.

    [34]

    R. Eftimie, G. de Vries and M. Lewis, Weakly nonlinear analysis of a hyperbolic model for animal group formation, J. Math. Biol., 59 (2009), 37-74.doi: 10.1007/s00285-008-0209-8.

    [35]

    R. Fetecau, Collective behavior of biological aggregations in two dimensions: A nonlocal kinetic model, Math. Model. Method. Appl. Sci., 21 (2011), 1539-1569.doi: 10.1142/S0218202511005489.

    [36]

    E. Geigant, K. Ladizhansky and A. Mogilner, An integrodifferential model for orientational distributions of {F-actin} in cells, SIAM J. Appl. Math., 59 (1998), 787-809.

    [37]

    P. Godillon-Lafitte and T. Goudon, A coupled model for radiative transfer: Doppler effects, equilibrium, and nonequilibrium diffusion asymptotics, Multiscale Model. Simul., 4 (2005), 1245-1279.doi: 10.1137/040621041.

    [38]

    T. Goudon, On Boltzmann equations and Fokker-Plank asymptotics: Influence of grazing collisions, J. Stat. Phys., 89 (1997), 751-776.doi: 10.1007/BF02765543.

    [39]

    S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related Models, 1 (2008), 415-435.doi: 10.3934/krm.2008.1.415.

    [40]

    C. K. Hemelrijk and H. Kunz, Density distribution and size sorting in fish schools: An individual-based model, Behav. Ecol., 16 (2004), 178-187.doi: 10.1093/beheco/arh149.

    [41]

    H. Hildenbrandt, C. Carere and C. K. Hemelrijk, Self-organised complex aerial displays of thousands of starlings: A model, Behavioral Ecology, 107 (2010), 1349-1359.

    [42]

    T. Hillen and H. G. Othmer, The diffusion limit of transport equations derived from velocity jump process, SIAM J. Appl. Math., 61 (2000), 751-775.doi: 10.1137/S0036139999358167.

    [43]

    E. E. Holmes, Are diffusion models too simple? A comparison with telegraph models of invasion, Am. Nat., 142 (1993), 779-795.doi: 10.1086/285572.

    [44]

    A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit, SIAM J. Numer. Anal., 35 (1998), 1073-1094 (electronic).doi: 10.1137/S0036142996305558.

    [45]

    A. Klar, An asymptotic preserving numerical scheme for kinetic equations in the low Mach number limit, SIAM J. Numer. Anal., 36 (1999), 1507-1527 (electronic).doi: 10.1137/S0036142997321765.

    [46]

    R. Larkin and R. Szafoni, Evidence for widely dispersed birds migrating together at night, Integrative and Comparative Biology, 48 (2008), 40-49.

    [47]

    A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm, J. Math. Biol., 38 (1999), 534-570.doi: 10.1007/s002850050158.

    [48]

    A. Mogilner, L. Edelstein-Keshet and G. B. Ermentrout, Selecting a common direction. II. Peak-like solutions representing total alignment of cell clusters, J. Math. Biol., 34 (1996), 811-842.doi: 10.1007/s002850050032.

    [49]

    D. Morale, V. Capasso and K. Oelschläger, An interacting particle system modelling aggregation behavior: From individuals to populations, J. Math. Biol., 50 (2005), 49-66.doi: 10.1007/s00285-004-0279-1.

    [50]

    I. Newton, The Migration Ecology of Birds, Academic Press, Elsevier, 2008.

    [51]

    H. G. Othmer and T. Hillen, The diffusion limit of transport equations II: Chemotaxis equations, SIAM J. Appl. Math., 62 (2002), 1222-1250.doi: 10.1137/S0036139900382772.

    [52]

    R. D. Passo and P. de Mottoni, Aggregative effects for a reaction-advection equation, J. Math. Biology, 20 (1984), 103-112.doi: 10.1007/BF00275865.

    [53]

    B. Pfistner, A one dimensional model for the swarming behaviour of Myxobacteria, in Biological Motion (eds. W. Alt and G. Hoffmann), Lecture Notes on Biomathematics, 89, Springer, 1990, 556-563.

    [54]

    J. Saragosti, V. Calvez, N. Bournaveas, A. Buguin, P. Silberzan and B. Perthame, Mathematical description of bacterial traveling pulses, PLoS Comput. Biol., 6 (2010), e1000890, 12pp.doi: 10.1371/journal.pcbi.1000890.

    [55]

    C. M. Topaz, A. L. Bertozzi and M. A. Lewis, A nonlocal continuum model for biological aggregation, Bull. Math. Bio., 68 (2006), 1601-1623.doi: 10.1007/s11538-006-9088-6.

    [56]

    F. Venuti, L. Bruno and N. Bellomo, Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges, Math. Comp. Model., 45 (2007), 252-269.doi: 10.1016/j.mcm.2006.04.007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(111) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return