\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Diffusion limit for the radiative transfer equation perturbed by a Wiener process

Abstract / Introduction Related Papers Cited by
  • The aim of this paper is the rigorous derivation of a stochastic non-linear diffusion equation from a radiative transfer equation perturbed with a random noise. The proof of the convergence relies on a formal Hilbert expansion and the estimation of the remainder. The Hilbert expansion has to be done up to order 3 to overcome some difficulties caused by the random noise.
    Mathematics Subject Classification: Primary: 35R60, 60H15; Secondary: 35B25, 85A25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    C. Bardos, F. Golse and B. Perthame, The Rosseland approximation for the radiative transfer equations, Comm. Pure Appl. Math., 40 (1987), 691-721.doi: 10.1002/cpa.3160400603.

    [2]

    C. Bardos, F. Golse, B. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434-460.doi: 10.1016/0022-1236(88)90096-1.

    [3]

    P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968.

    [4]

    P. Bouchut and L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 19-36.doi: 10.1017/S030821050002744X.

    [5]

    Z. Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61 (1997), 245-295.doi: 10.1080/17442509708834122.

    [6]

    Z. Brzeźniak and S. Peszat, Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Studia Math., 137 (1999), 261-299.

    [7]

    G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223.

    [8]

    A. de Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Comm. Math. Phys., 205 (1999), 161-181.doi: 10.1007/s002200050672.

    [9]

    A. de Bouard and M. Gazeau, A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers, Ann. Appl. Probab., 22 (2012), 2460-2504.doi: 10.1214/11-AAP839.

    [10]

    A. Debussche and J. Vovelle, Diffusion limit for a stochastic kinetic problem, Commun. Pure Appl. Anal., 11 (2012), 2305-2326.doi: 10.3934/cpaa.2012.11.2305.

    [11]

    A. Debussche, S. De Moor and M. Hofmanová, A regularity result for quasilinear stochastic partial differential equations of parabolic type, SIAM Journal on Mathematical Analysis, 47 (2015), 1590-1614.doi: 10.1137/130950549.

    [12]

    A. Debussche, S. De Moor and J. Vovelle, Diffusion limit for the radiative transfer equation perturbed by a Markovian process, preprint, arXiv:1405.2192.

    [13]

    J. P. Fouque, J. Garnier, G. Papanicolaou and K. Solna, Wave Propagation and Time Reversal in Randomly Layered Media, Stochastic Modelling and Applied Probability, 56, Springer, New York, 2007.doi: 10.1007/978-0-387-49808-9_4.

    [14]

    I. Gyöngy, Existence and uniqueness results for semilinear stochastic partial differential equations, Stochastic Process. Appl., 73 (1998), 271-299.doi: 10.1016/S0304-4149(97)00103-8.

    [15]

    I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.doi: 10.1007/BF01203833.

    [16]

    P.-L. Lions, B. Perthame and P. E. Souganidis, Stochastic averaging lemmas for kinetic equations, in S'eminaire Laurent Schwartz - EDP et applications (2011-2012), Exp. No. 26, 17pp, arXiv:1204.0317. doi: 10.5802/slsedp.21.

    [17]

    A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), 573-596.doi: 10.1007/s00220-008-0523-4.

    [18]

    G. C. Papanicolaou, D. Stroock and S. R. S. Varadhan, Martingale approach to some limit theorems, in Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Academic Press, 1977.

    [19]

    S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2007.doi: 10.1017/CBO9780511721373.

    [20]

    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(120) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return