Citation: |
[1] |
C. Bardos, F. Golse and B. Perthame, The Rosseland approximation for the radiative transfer equations, Comm. Pure Appl. Math., 40 (1987), 691-721.doi: 10.1002/cpa.3160400603. |
[2] |
C. Bardos, F. Golse, B. Perthame and R. Sentis, The nonaccretive radiative transfer equations: Existence of solutions and Rosseland approximation, J. Funct. Anal., 77 (1988), 434-460.doi: 10.1016/0022-1236(88)90096-1. |
[3] |
P. Billingsley, Convergence of Probability Measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. |
[4] |
P. Bouchut and L. Desvillettes, Averaging lemmas without time Fourier transform and application to discretized kinetic equations, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 19-36.doi: 10.1017/S030821050002744X. |
[5] |
Z. Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61 (1997), 245-295.doi: 10.1080/17442509708834122. |
[6] |
Z. Brzeźniak and S. Peszat, Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Studia Math., 137 (1999), 261-299. |
[7] |
G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223. |
[8] |
A. de Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Comm. Math. Phys., 205 (1999), 161-181.doi: 10.1007/s002200050672. |
[9] |
A. de Bouard and M. Gazeau, A diffusion approximation theorem for a nonlinear PDE with application to random birefringent optical fibers, Ann. Appl. Probab., 22 (2012), 2460-2504.doi: 10.1214/11-AAP839. |
[10] |
A. Debussche and J. Vovelle, Diffusion limit for a stochastic kinetic problem, Commun. Pure Appl. Anal., 11 (2012), 2305-2326.doi: 10.3934/cpaa.2012.11.2305. |
[11] |
A. Debussche, S. De Moor and M. Hofmanová, A regularity result for quasilinear stochastic partial differential equations of parabolic type, SIAM Journal on Mathematical Analysis, 47 (2015), 1590-1614.doi: 10.1137/130950549. |
[12] |
A. Debussche, S. De Moor and J. Vovelle, Diffusion limit for the radiative transfer equation perturbed by a Markovian process, preprint, arXiv:1405.2192. |
[13] |
J. P. Fouque, J. Garnier, G. Papanicolaou and K. Solna, Wave Propagation and Time Reversal in Randomly Layered Media, Stochastic Modelling and Applied Probability, 56, Springer, New York, 2007.doi: 10.1007/978-0-387-49808-9_4. |
[14] |
I. Gyöngy, Existence and uniqueness results for semilinear stochastic partial differential equations, Stochastic Process. Appl., 73 (1998), 271-299.doi: 10.1016/S0304-4149(97)00103-8. |
[15] |
I. Gyöngy and N. Krylov, Existence of strong solutions for Itô's stochastic equations via approximations, Probab. Theory Related Fields, 105 (1996), 143-158.doi: 10.1007/BF01203833. |
[16] |
P.-L. Lions, B. Perthame and P. E. Souganidis, Stochastic averaging lemmas for kinetic equations, in S'eminaire Laurent Schwartz - EDP et applications (2011-2012), Exp. No. 26, 17pp, arXiv:1204.0317. doi: 10.5802/slsedp.21. |
[17] |
A. Mellet and A. Vasseur, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations, Comm. Math. Phys., 281 (2008), 573-596.doi: 10.1007/s00220-008-0523-4. |
[18] |
G. C. Papanicolaou, D. Stroock and S. R. S. Varadhan, Martingale approach to some limit theorems, in Papers from the Duke Turbulence Conference (Duke Univ., Durham, N.C., 1976), Academic Press, 1977. |
[19] |
S. Peszat and J. Zabczyk, Stochastic Partial Differential Equations with Lévy Noise: An Evolution Equation Approach, Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2007.doi: 10.1017/CBO9780511721373. |
[20] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4), 146 (1987), 65-96.doi: 10.1007/BF01762360. |