2016, 9(1): 217-235. doi: 10.3934/krm.2016.9.217

A random cloud model for the Wigner equation

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39 - 10117 Berlin

Received  December 2014 Revised  July 2015 Published  October 2015

A probabilistic model for the Wigner equation is studied. The model is based on a particle system with the time evolution of a piecewise deterministic Markov process. Each particle is characterized by a real-valued weight, a position and a wave-vector. The particle position changes continuously, according to the velocity determined by the wave-vector. New particles are created randomly and added to the system. The main result is that appropriate functionals of the process satisfy a weak form of the Wigner equation.
Citation: Wolfgang Wagner. A random cloud model for the Wigner equation. Kinetic & Related Models, 2016, 9 (1) : 217-235. doi: 10.3934/krm.2016.9.217
References:
[1]

L. Breiman, Probability,, Addison-Wesley Publishing Company, (1968).

[2]

M. H. A. Davis, Markov Models and Optimization,, Chapman & Hall, (1993). doi: 10.1007/978-1-4899-4483-2.

[3]

I. M. Gamba, M. P. Gualdani and R. W. Sharp, An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation,, Commun. Math. Sci., 7 (2009), 635. doi: 10.4310/CMS.2009.v7.n3.a7.

[4]

I. M. Gamba, S. Rjasanow and W. Wagner, Direct simulation of the uniformly heated granular Boltzmann equation,, Math. Comput. Modelling, 42 (2005), 683. doi: 10.1016/j.mcm.2004.02.047.

[5]

T. M. M. Homolle and N. G. Hadjiconstantinou, A low-variance deviational simulation Monte Carlo for the Boltzmann equation,, J. Comput. Phys., 226 (2007), 2341. doi: 10.1016/j.jcp.2007.07.006.

[6]

P. A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations,, Math. Methods Appl. Sci., 11 (1989), 459. doi: 10.1002/mma.1670110404.

[7]

P. A. Markowich and C. A. Ringhofer, An analysis of the quantum Liouville equation,, Z. Angew. Math. Mech., 69 (1989), 121. doi: 10.1002/zamm.19890690303.

[8]

M. Nedjalkov, H. Kosina, S. Selberherr, C. Ringhofer and D. K. Ferry, Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices,, Phys. Rev. B, 70 (2004). doi: 10.1103/PhysRevB.70.115319.

[9]

R. I. A. Patterson and W. Wagner, A stochastic weighted particle method for coagulation-advection problems,, SIAM J. Sci. Comput., 34 (2012). doi: 10.1137/110843319.

[10]

R. I. A. Patterson, W. Wagner and M. Kraft, Stochastic weighted particle methods for population balance equations,, J. Comput. Phys., 230 (2011), 7456. doi: 10.1016/j.jcp.2011.06.011.

[11]

D. Querlioz and P. Dollfus, The Wigner Monte Carlo Method for Nanoelectronic Devices,, Wiley, (2010). doi: 10.1002/9781118618479.

[12]

G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner, Low-noise Monte Carlo simulation of the variable hard sphere gas,, Phys. Fluids, 23 (2011), 1. doi: 10.1063/1.3558887.

[13]

S. Rjasanow and W. Wagner, A stochastic weighted particle method for the Boltzmann equation,, J. Comput. Phys., 124 (1996), 243. doi: 10.1006/jcph.1996.0057.

[14]

S. Rjasanow and W. Wagner, Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation,, Math. Comput. Modelling, 33 (2001), 907. doi: 10.1016/S0895-7177(00)00289-2.

[15]

J. M. Sellier, M. Nedjalkov, I. Dimov and S. Selberherr, A benchmark study of the Wigner Monte Carlo method,, Monte Carlo Methods Appl., 20 (2014), 43. doi: 10.1515/mcma-2013-0018.

[16]

W. Wagner, Deviational particle Monte Carlo for the Boltzmann equation,, Monte Carlo Methods Appl., 14 (2008), 191. doi: 10.1515/MCMA.2008.010.

[17]

W. Wagner, A random cloud model for the Schrödinger equation,, Kinetic and Related Models, 7 (2014), 361. doi: 10.3934/krm.2014.7.361.

[18]

E. Wigner, On the quantum correction for thermodynamic equilibrium,, Phys. Rev., 40 (1932), 749.

show all references

References:
[1]

L. Breiman, Probability,, Addison-Wesley Publishing Company, (1968).

[2]

M. H. A. Davis, Markov Models and Optimization,, Chapman & Hall, (1993). doi: 10.1007/978-1-4899-4483-2.

[3]

I. M. Gamba, M. P. Gualdani and R. W. Sharp, An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation,, Commun. Math. Sci., 7 (2009), 635. doi: 10.4310/CMS.2009.v7.n3.a7.

[4]

I. M. Gamba, S. Rjasanow and W. Wagner, Direct simulation of the uniformly heated granular Boltzmann equation,, Math. Comput. Modelling, 42 (2005), 683. doi: 10.1016/j.mcm.2004.02.047.

[5]

T. M. M. Homolle and N. G. Hadjiconstantinou, A low-variance deviational simulation Monte Carlo for the Boltzmann equation,, J. Comput. Phys., 226 (2007), 2341. doi: 10.1016/j.jcp.2007.07.006.

[6]

P. A. Markowich, On the equivalence of the Schrödinger and the quantum Liouville equations,, Math. Methods Appl. Sci., 11 (1989), 459. doi: 10.1002/mma.1670110404.

[7]

P. A. Markowich and C. A. Ringhofer, An analysis of the quantum Liouville equation,, Z. Angew. Math. Mech., 69 (1989), 121. doi: 10.1002/zamm.19890690303.

[8]

M. Nedjalkov, H. Kosina, S. Selberherr, C. Ringhofer and D. K. Ferry, Unified particle approach to Wigner-Boltzmann transport in small semiconductor devices,, Phys. Rev. B, 70 (2004). doi: 10.1103/PhysRevB.70.115319.

[9]

R. I. A. Patterson and W. Wagner, A stochastic weighted particle method for coagulation-advection problems,, SIAM J. Sci. Comput., 34 (2012). doi: 10.1137/110843319.

[10]

R. I. A. Patterson, W. Wagner and M. Kraft, Stochastic weighted particle methods for population balance equations,, J. Comput. Phys., 230 (2011), 7456. doi: 10.1016/j.jcp.2011.06.011.

[11]

D. Querlioz and P. Dollfus, The Wigner Monte Carlo Method for Nanoelectronic Devices,, Wiley, (2010). doi: 10.1002/9781118618479.

[12]

G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner, Low-noise Monte Carlo simulation of the variable hard sphere gas,, Phys. Fluids, 23 (2011), 1. doi: 10.1063/1.3558887.

[13]

S. Rjasanow and W. Wagner, A stochastic weighted particle method for the Boltzmann equation,, J. Comput. Phys., 124 (1996), 243. doi: 10.1006/jcph.1996.0057.

[14]

S. Rjasanow and W. Wagner, Simulation of rare events by the stochastic weighted particle method for the Boltzmann equation,, Math. Comput. Modelling, 33 (2001), 907. doi: 10.1016/S0895-7177(00)00289-2.

[15]

J. M. Sellier, M. Nedjalkov, I. Dimov and S. Selberherr, A benchmark study of the Wigner Monte Carlo method,, Monte Carlo Methods Appl., 20 (2014), 43. doi: 10.1515/mcma-2013-0018.

[16]

W. Wagner, Deviational particle Monte Carlo for the Boltzmann equation,, Monte Carlo Methods Appl., 14 (2008), 191. doi: 10.1515/MCMA.2008.010.

[17]

W. Wagner, A random cloud model for the Schrödinger equation,, Kinetic and Related Models, 7 (2014), 361. doi: 10.3934/krm.2014.7.361.

[18]

E. Wigner, On the quantum correction for thermodynamic equilibrium,, Phys. Rev., 40 (1932), 749.

[1]

Marco Di Francesco, Simone Fagioli, Massimiliano Daniele Rosini, Giovanni Russo. Deterministic particle approximation of the Hughes model in one space dimension. Kinetic & Related Models, 2017, 10 (1) : 215-237. doi: 10.3934/krm.2017009

[2]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[3]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[4]

Pierre Degond, Simone Goettlich, Axel Klar, Mohammed Seaid, Andreas Unterreiter. Derivation of a kinetic model from a stochastic particle system. Kinetic & Related Models, 2008, 1 (4) : 557-572. doi: 10.3934/krm.2008.1.557

[5]

Wael Bahsoun, Christopher Bose, Anthony Quas. Deterministic representation for position dependent random maps. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 529-540. doi: 10.3934/dcds.2008.22.529

[6]

Michele Gianfelice, Marco Isopi. On the location of the 1-particle branch of the spectrum of the disordered stochastic Ising model. Networks & Heterogeneous Media, 2011, 6 (1) : 127-144. doi: 10.3934/nhm.2011.6.127

[7]

Hongjun Gao, Fei Liang. On the stochastic beam equation driven by a Non-Gaussian Lévy process. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1027-1045. doi: 10.3934/dcdsb.2014.19.1027

[8]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[9]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[10]

Dongsheng Yin, Min Tang, Shi Jin. The Gaussian beam method for the wigner equation with discontinuous potentials. Inverse Problems & Imaging, 2013, 7 (3) : 1051-1074. doi: 10.3934/ipi.2013.7.1051

[11]

Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial & Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717

[12]

P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks. Mathematical Biosciences & Engineering, 2007, 4 (3) : 373-402. doi: 10.3934/mbe.2007.4.373

[13]

Fabio Augusto Milner, Ruijun Zhao. A deterministic model of schistosomiasis with spatial structure. Mathematical Biosciences & Engineering, 2008, 5 (3) : 505-522. doi: 10.3934/mbe.2008.5.505

[14]

Tomasz Komorowski, Lenya Ryzhik. Fluctuations of solutions to Wigner equation with an Ornstein-Uhlenbeck potential. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 871-914. doi: 10.3934/dcdsb.2012.17.871

[15]

Paolo Antonelli, Seung-Yeal Ha, Dohyun Kim, Pierangelo Marcati. The Wigner-Lohe model for quantum synchronization and its emergent dynamics. Networks & Heterogeneous Media, 2017, 12 (3) : 403-416. doi: 10.3934/nhm.2017018

[16]

Deena Schmidt, Janet Best, Mark S. Blumberg. Random graph and stochastic process contributions to network dynamics. Conference Publications, 2011, 2011 (Special) : 1279-1288. doi: 10.3934/proc.2011.2011.1279

[17]

Azmy S. Ackleh, Shuhua Hu. Comparison between stochastic and deterministic selection-mutation models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 133-157. doi: 10.3934/mbe.2007.4.133

[18]

Daniel Gerth, Andreas Hofinger, Ronny Ramlau. On the lifting of deterministic convergence rates for inverse problems with stochastic noise. Inverse Problems & Imaging, 2017, 11 (4) : 663-687. doi: 10.3934/ipi.2017031

[19]

Felix X.-F. Ye, Yue Wang, Hong Qian. Stochastic dynamics: Markov chains and random transformations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2337-2361. doi: 10.3934/dcdsb.2016050

[20]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

2016 Impact Factor: 1.261

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]