Partial differential equations describing the dynamics of cell population densities from a fluid mechanical perspective can model the growth of avascular tumours. In this framework, we consider a system of equations that describes the interaction between a population of dividing cells and a population of non-dividing cells. The two cell populations are characterised by different mobilities. We present the results of numerical simulations displaying two-dimensional spherical waves with sharp interfaces between dividing and non-dividing cells. Furthermore, we numerically observe how different ratios between the mobilities change the morphology of the interfaces, and lead to the emergence of finger-like patterns of invasion above a threshold. Motivated by these simulations, we study the existence of one-dimensional travelling wave solutions.
Citation: |
[1] | D. Ambrosi and F. Mollica, On the mechanics of a growing tumor, International Journal of Engineering Science, 40 (2002), 1297-1316. doi: 10.1016/S0020-7225(02)00014-9. |
[2] | R. Araujo and D. McElwain, A history of the study of solid tumour growth: The contribution of mathematical modelling, Bulletin of Mathematical Biology, 66 (2004), 1039-1091. doi: 10.1016/j.bulm.2003.11.002. |
[3] | E. Baratchart, S. Benzekry, A. Bikfalvi, T. Colin, L. S. Cooley, R. Pineau, E. J. Ribot, O. Saut and W. Souleyreau, Computational modelling of metastasis development in renal cell carcinoma, PLoS Computational Biology, 11 (2015), e1004626. doi: 10.1371/journal.pcbi.1004626. |
[4] | H. Berestycki, B. Nicolaenko and B. Scheurer, Traveling wave solutions to combustion models and their singular limits, SIAM Journal on Mathematical Analysis, 16 (1985), 1207-1242. doi: 10.1137/0516088. |
[5] | A. Brú, S. Albertos, J.L. Subiza, J.L. García-Asenjo and I. Brú, The universal dynamics of tumor growth, Biophysical Journal, 85 (2003), 2948-2961. |
[6] | H. Byrne and M. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, 135 (1996), 187-216. doi: 10.1016/0025-5564(96)00023-5. |
[7] | H. Byrne and D. Drasdo, Individual-based and continuum models of growing cell populations: A comparison, Journal of Mathematical Biology, 58 (2009), 657-687. doi: 10.1007/s00285-008-0212-0. |
[8] | H. Byrne and L. Preziosi, Modelling solid tumour growth using the theory of mixtures, Mathematical Medicine and Biology, 20 (2003), 341-366. doi: 10.1093/imammb/20.4.341. |
[9] | H. Byrne and M.A. Chaplain, Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathematical and Computer Modelling, 24 (1996), 1-17. doi: 10.1016/S0895-7177(96)00174-4. |
[10] | P. Ciarletta, L. Foret and M. Ben~Amar, The radial growth phase of malignant melanoma: Muti-phase modelling, numerical simulation and linear stability, J. R. Soc. Interface, 8 (2011), 345-368. doi: 10.1098/rsif.2010.0285. |
[11] | E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97–115, URL http://dx.doi.org/10.1017/S0956792598003660. doi: 10.1017/S0956792598003660. |
[12] | D. Drasdo and S. Hoehme, Modeling the impact of granular embedding media, and pulling versus pushing cells on growing cell clones, New Journal of Physics, 14 (2012), 055025. doi: 10.1088/1367-2630/14/5/055025. |
[13] | A. Friedman, A hierarchy of cancer models and their mathematical challenges, Discrete and Continuous Dynamical Systems Series B, 4 (2004), 147-159. doi: 10.3934/dcdsb.2004.4.147. |
[14] | H. Greenspan, On the growth and stability of cell cultures and solid tumors, Journal of Theoretical Biology, 56 (1976), 229-242. doi: 10.1016/S0022-5193(76)80054-9. |
[15] | M. Kowalczyk, B. Perthame and N. Vauchelet, Transversal instability for the thermodiffusive reaction-diffusion system, Chinese Annals of Mathematics, Series B, 36 (2015), 871-882. doi: 10.1007/s11401-015-0981-x. |
[16] | R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, vol. 31, Cambridge university press, 2002. doi: 10.1017/CBO9780511791253. |
[17] | M. Mimura, H. Sakaguchi and M. Matsushita, Reaction diffusion modelling of bacterial colony patterns, Physica A, 282 (2000), 283-303. doi: 10.1016/S0378-4371(00)00085-6. |
[18] | B. Perthame, F. Quirós, M. Tang and N. Vauchelet, Derivation of a hele-shaw type system from a cell model with active motion, Interfaces and Free Boundaries, 16 (2014), 489-508. doi: 10.4171/IFB/327. |
[19] | B. Perthame, F. Quirós and J. L. Vázquez, The hele-shaw asymptotics for mechanical models of tumor growth, ARMA, 212 (2014), 93–127, URL http://hal.upmc.fr/docs/00/83/19/32/PDF/Hele_Shaw.pdf. doi: 10.1007/s00205-013-0704-y. |
[20] | L. Preziosi, Cancer Modelling and Simulation, CRC Press, 2003. doi: 10.1201/9780203494899. |
[21] | I. Ramis-Conde, D. Drasdo, A.R. Anderson and M.A. Chaplain, Modeling the influence of the e-cadherin-$β$-catenin pathway in cancer cell invasion: A multiscale approach, Biophysical Journal, 95 (2008), 155-165. |
[22] | J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost and F. Jülicher, Fluidization of tissues by cell division and apoptosis, Proceedings of the National Academy of Sciences, 107 (2010), 20863-20868. doi: 10.1073/pnas.1011086107. |
[23] | T. Roose, S.J. Chapman and P.K. Maini, Mathematical models of avascular tumor growth, SIAM Review, 49 (2007), 179-208. doi: 10.1137/S0036144504446291. |
[24] | P. G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or heleshaw cell containing a more viscous liquid, in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 245, The Royal Society, 1958,312–329 doi: 10.1098/rspa.1958.0085. |
[25] | J.A. Sherratt and M.A. Chaplain, A new mathematical model for avascular tumour growth, Journal of Mathematical Biology, 43 (2001), 291-312. doi: 10.1007/s002850100088. |
[26] | M. Tang, N. Vauchelet, I. Cheddadi, I. Vignon-Clementel, D. Drasdo and B. Perthame, Composite waves for a cell population system modeling tumor growth and invasion, Chinese Annals of Mathematics, Series B, 34 (2013), 295-318. doi: 10.1007/s11401-013-0761-4. |