# American Institute of Mathematical Sciences

September  2017, 10(3): 669-688. doi: 10.3934/krm.2017027

## Finite range method of approximation for balance laws in measure spaces

 Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

* Corresponding author: Piotr Gwiazda

Received  April 2016 Revised  July 2016 Published  December 2016

In the following paper we reconsider a numerical scheme recently introduced in [10]. The method was designed for a wide class of size structured population models with a nonlocal term describing the birth process. Despite its numerous advantages it features the exponential growth in time of the number of particles constituting the numerical solution. We introduce a new algorithm free from this inconvenience. The improvement is based on the application the Finite Range Approximation to the nonlocal term. We prove the convergence of the derived method and provide the rate of its convergence. Moreover, the results are illustrated by numerical simulations applied to various test cases.

Citation: Piotr Gwiazda, Piotr Orlinski, Agnieszka Ulikowska. Finite range method of approximation for balance laws in measure spaces. Kinetic & Related Models, 2017, 10 (3) : 669-688. doi: 10.3934/krm.2017027
##### References:

show all references

##### References:
Function $f$ and its Finite Range Approximation
Function $f^{\varepsilon}$ and its approximation $\bar f^{\varepsilon}$
Order of convergence
The error of the FRA method for $\varepsilon=0.1$
 $\Delta t$ ${\rm{Err}}(1,\Delta t,0.1)$ $\log({\frac{{\rm{Err}}(T,2\Delta t,\varepsilon)}{{\rm{Err}}(T,\Delta t,\varepsilon)}}) / \log 2$ $1.0000\cdot 10^{-1}$ $0.0008865973$ - $5.0000\cdot 10^{-2}$ $0.0005886514$ 0.59086543 $2.5000\cdot 10^{-2}$ $0.0003434678$ 0.77723882 $1.2500\cdot 10^{-2}$ $0.0002668756$ 0.36400752 $6.2500\cdot 10^{-3}$ $0.0002400045$ 0.15310595 $3.1250\cdot 10^{-3}$ $0.0002258416$ 0.08775007 $1.5625\cdot 10^{-3}$ $0.0002187803$ 0.04582869 $7.8125\cdot 10^{-4}$ $0.0002154824$ 0.02191237
 $\Delta t$ ${\rm{Err}}(1,\Delta t,0.1)$ $\log({\frac{{\rm{Err}}(T,2\Delta t,\varepsilon)}{{\rm{Err}}(T,\Delta t,\varepsilon)}}) / \log 2$ $1.0000\cdot 10^{-1}$ $0.0008865973$ - $5.0000\cdot 10^{-2}$ $0.0005886514$ 0.59086543 $2.5000\cdot 10^{-2}$ $0.0003434678$ 0.77723882 $1.2500\cdot 10^{-2}$ $0.0002668756$ 0.36400752 $6.2500\cdot 10^{-3}$ $0.0002400045$ 0.15310595 $3.1250\cdot 10^{-3}$ $0.0002258416$ 0.08775007 $1.5625\cdot 10^{-3}$ $0.0002187803$ 0.04582869 $7.8125\cdot 10^{-4}$ $0.0002154824$ 0.02191237
The error of the FRA method for $\varepsilon=0.0125$
 $\Delta t$ ${\rm{Err}}(1,\Delta t,0.0125)$ $\log({\frac{{\rm{Err}}(T,2\Delta t,\varepsilon)}{{\rm{Err}}(T,\Delta t,\varepsilon)}})/ \log 2$ $1.0000\cdot 10^{-1}$ $6.702793\cdot 10^{-4}$ - $5.0000\cdot 10^{-2}$ $4.255311\cdot 10^{-4}$ 0.6554979 $2.5000\cdot 10^{-2}$ $1.757573\cdot 10^{-4}$ 1.2756799 $1.2500\cdot 10^{-2}$ $9.330613\cdot 10^{-5}$ 0.9135408 $6.2500\cdot 10^{-3}$ $5.658711\cdot 10^{-5}$ 0.7214983 $3.1250\cdot 10^{-3}$ $4.055238\cdot 10^{-5}$ 0.4806869 $1.5625\cdot 10^{-3}$ $3.332588\cdot 10^{-5}$ 0.2831438 $7.8125\cdot 10^{-4}$ $2.973577\cdot 10^{-5}$ 0.1644434
 $\Delta t$ ${\rm{Err}}(1,\Delta t,0.0125)$ $\log({\frac{{\rm{Err}}(T,2\Delta t,\varepsilon)}{{\rm{Err}}(T,\Delta t,\varepsilon)}})/ \log 2$ $1.0000\cdot 10^{-1}$ $6.702793\cdot 10^{-4}$ - $5.0000\cdot 10^{-2}$ $4.255311\cdot 10^{-4}$ 0.6554979 $2.5000\cdot 10^{-2}$ $1.757573\cdot 10^{-4}$ 1.2756799 $1.2500\cdot 10^{-2}$ $9.330613\cdot 10^{-5}$ 0.9135408 $6.2500\cdot 10^{-3}$ $5.658711\cdot 10^{-5}$ 0.7214983 $3.1250\cdot 10^{-3}$ $4.055238\cdot 10^{-5}$ 0.4806869 $1.5625\cdot 10^{-3}$ $3.332588\cdot 10^{-5}$ 0.2831438 $7.8125\cdot 10^{-4}$ $2.973577\cdot 10^{-5}$ 0.1644434
The error of the FRA method for $\varepsilon=0.0015625$
 $\Delta t$ ${\rm{Err}}(1,\Delta t,0.0015625)$ $\log({\frac{{\rm{Err}}(T,2\Delta t,\varepsilon)}{{\rm{Err}}(T,\Delta t,\varepsilon)}}) / \log 2$ $1.0000\cdot 10^{-1}$ $6.616854\cdot 10^{-4}$ - $5.0000\cdot 10^{-2}$ $4.139056\cdot 10^{-4}$ 0.6768439 $2.5000\cdot 10^{-2}$ $1.570582\cdot 10^{-4}$ 1.3980025 $1.2500\cdot 10^{-2}$ $7.418803\cdot 10^{-5}$ 1.0820407 $6.2500\cdot 10^{-3}$ $3.649949\cdot 10^{-5}$ 1.0820407 $3.1250\cdot 10^{-3}$ $1.883518\cdot 10^{-5}$ 0.9544464 $1.5625\cdot 10^{-3}$ $1.032763\cdot 10^{-5}$ 0.8669200 $7.8125\cdot 10^{-4}$ $6.277910\cdot 10^{-6}$ 0.7181537
 $\Delta t$ ${\rm{Err}}(1,\Delta t,0.0015625)$ $\log({\frac{{\rm{Err}}(T,2\Delta t,\varepsilon)}{{\rm{Err}}(T,\Delta t,\varepsilon)}}) / \log 2$ $1.0000\cdot 10^{-1}$ $6.616854\cdot 10^{-4}$ - $5.0000\cdot 10^{-2}$ $4.139056\cdot 10^{-4}$ 0.6768439 $2.5000\cdot 10^{-2}$ $1.570582\cdot 10^{-4}$ 1.3980025 $1.2500\cdot 10^{-2}$ $7.418803\cdot 10^{-5}$ 1.0820407 $6.2500\cdot 10^{-3}$ $3.649949\cdot 10^{-5}$ 1.0820407 $3.1250\cdot 10^{-3}$ $1.883518\cdot 10^{-5}$ 0.9544464 $1.5625\cdot 10^{-3}$ $1.032763\cdot 10^{-5}$ 0.8669200 $7.8125\cdot 10^{-4}$ $6.277910\cdot 10^{-6}$ 0.7181537
The error of the FRA method for $\varepsilon=\Delta t$
 $\Delta t$ ${\rm{Err}}(1,\Delta t,\Delta t)$ $\log({\frac{{\rm{Err}}(T,2\Delta t,2\varepsilon)}{{\rm{Err}}(T,\Delta t,\varepsilon)}}) / \log 2$ $1.0000\cdot 10^{-1}$ $8.865973\cdot 10^{-4}$ - $5.0000\cdot 10^{-2}$ $4.797352\cdot 10^{-4}$ 0.8860407 $2.5000\cdot 10^{-2}$ $1.991736\cdot 10^{-4}$ 1.2682122 $1.2500\cdot 10^{-2}$ $9.330613\cdot 10^{-5}$ 1.0939823 $6.2500\cdot 10^{-3}$ $4.477800\cdot 10^{-5}$ 1.0591816 $3.1250\cdot 10^{-3}$ $2.162411\cdot 10^{-5}$ 1.0501496 $1.5625\cdot 10^{-3}$ $1.032763\cdot 10^{-5}$ 1.0661308 $7.8125\cdot 10^{-4}$ $4.763338\cdot 10^{-6}$ 1.1164650
 $\Delta t$ ${\rm{Err}}(1,\Delta t,\Delta t)$ $\log({\frac{{\rm{Err}}(T,2\Delta t,2\varepsilon)}{{\rm{Err}}(T,\Delta t,\varepsilon)}}) / \log 2$ $1.0000\cdot 10^{-1}$ $8.865973\cdot 10^{-4}$ - $5.0000\cdot 10^{-2}$ $4.797352\cdot 10^{-4}$ 0.8860407 $2.5000\cdot 10^{-2}$ $1.991736\cdot 10^{-4}$ 1.2682122 $1.2500\cdot 10^{-2}$ $9.330613\cdot 10^{-5}$ 1.0939823 $6.2500\cdot 10^{-3}$ $4.477800\cdot 10^{-5}$ 1.0591816 $3.1250\cdot 10^{-3}$ $2.162411\cdot 10^{-5}$ 1.0501496 $1.5625\cdot 10^{-3}$ $1.032763\cdot 10^{-5}$ 1.0661308 $7.8125\cdot 10^{-4}$ $4.763338\cdot 10^{-6}$ 1.1164650
 [1] Azmy S. Ackleh, Vinodh K. Chellamuthu, Kazufumi Ito. Finite difference approximations for measure-valued solutions of a hierarchically size-structured population model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 233-258. doi: 10.3934/mbe.2015.12.233 [2] Leonardi Filippo. A projection method for the computation of admissible measure valued solutions of the incompressible Euler equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 941-961. doi: 10.3934/dcdss.2018056 [3] L. M. Abia, O. Angulo, J.C. López-Marcos. Size-structured population dynamics models and their numerical solutions. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1203-1222. doi: 10.3934/dcdsb.2004.4.1203 [4] Agnieszka Ulikowska. An age-structured two-sex model in the space of radon measures: Well posedness. Kinetic & Related Models, 2012, 5 (4) : 873-900. doi: 10.3934/krm.2012.5.873 [5] Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311-335. doi: 10.3934/mbe.2015.12.311 [6] Kazuhiro Ishige. On the existence of solutions of the Cauchy problem for porous medium equations with radon measure as initial data. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 521-546. doi: 10.3934/dcds.1995.1.521 [7] Ammari Zied, Liard Quentin. On uniqueness of measure-valued solutions to Liouville's equation of Hamiltonian PDEs. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 723-748. doi: 10.3934/dcds.2018032 [8] Simona Fornaro, Stefano Lisini, Giuseppe Savaré, Giuseppe Toscani. Measure valued solutions of sub-linear diffusion equations with a drift term. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1675-1707. doi: 10.3934/dcds.2012.32.1675 [9] Bruno Buonomo, Deborah Lacitignola. On the stabilizing effect of cannibalism in stage-structured population models. Mathematical Biosciences & Engineering, 2006, 3 (4) : 717-731. doi: 10.3934/mbe.2006.3.717 [10] Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049 [11] Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627 [12] Valentin Afraimovich, Lev Glebsky, Rosendo Vazquez. Measures related to metric complexity. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1299-1309. doi: 10.3934/dcds.2010.28.1299 [13] M. M. Rao. Integration with vector valued measures. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5429-5440. doi: 10.3934/dcds.2013.33.5429 [14] Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943 [15] Andrea Tosin, Paolo Frasca. Existence and approximation of probability measure solutions to models of collective behaviors. Networks & Heterogeneous Media, 2011, 6 (3) : 561-596. doi: 10.3934/nhm.2011.6.561 [16] Yingli Pan, Ying Su, Junjie Wei. Bistable waves of a recursive system arising from seasonal age-structured population models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 511-528. doi: 10.3934/dcdsb.2018184 [17] Thomas Lorenz. Nonlocal hyperbolic population models structured by size and spatial position: Well-posedness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4547-4628. doi: 10.3934/dcdsb.2019156 [18] Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1819-1839. doi: 10.3934/dcds.2017076 [19] Kathryn Lindsey, Rodrigo Treviño. Infinite type flat surface models of ergodic systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5509-5553. doi: 10.3934/dcds.2016043 [20] Seung-Yeal Ha, Doron Levy. Particle, kinetic and fluid models for phototaxis. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 77-108. doi: 10.3934/dcdsb.2009.12.77

2018 Impact Factor: 1.38