• Previous Article
    Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction
  • KRM Home
  • This Issue
  • Next Article
    Grossly determined solutions for a Boltzmann-like equation
December 2017, 10(4): 925-955. doi: 10.3934/krm.2017037

Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations

Department of Mathematics and Computer Science, Karlstad University, 65188 Karlstad, Sweden

Received  March 2016 Revised  December 2016 Published  March 2017

We consider some extensions of the classical discrete Boltzmann equation to the cases of multicomponent mixtures, polyatomic molecules (with a finite number of different internal energies), and chemical reactions, but also general discrete quantum kinetic Boltzmann-like equations; discrete versions of the Nordheim-Boltzmann (or Uehling-Uhlenbeck) equation for bosons and fermions and a kinetic equation for excitations in a Bose gas interacting with a Bose-Einstein condensate. In each case we have an H-theorem and so for the planar stationary half-space problem, we have convergence to an equilibrium distribution at infinity (or at least a manifold of equilibrium distributions). In particular, we consider the nonlinear half-space problem of condensation and evaporation for these discrete Boltzmann-like equations. We assume that the flow tends to a stationary point at infinity and that the outgoing flow is known at the wall, maybe also partly linearly depending on the incoming flow. We find that the systems we obtain are of similar structures as for the classical discrete Boltzmann equation (for single species), and that previously obtained results for the discrete Boltzmann equation can be applied after being generalized. Then the number of conditions on the assigned data at the wall needed for existence of a unique solution is found. The number of parameters to be specified in the boundary conditions depends on if we have subsonic or supersonic condensation or evaporation. All our results are valid for any finite number of velocities.

Citation: Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037
References:
[1]

L. Arkeryd, On low temperature kinetic theory; spin diffusion, Bose-Einstein condensates, anyons, J. Stat. Phys., 150 (2013), 1063-1079. doi: 10.1007/s10955-013-0695-y.

[2]

L. Arkeryd and A. Nouri, A Milne problem from a Bose condensate with excitations, Kinet. Relat. Models, 6 (2013), 671-686. doi: 10.3934/krm.2013.6.671.

[3]

H. Babovsky, Kinetic boundary layers: On the adequate discretization of the Boltzmann collision operator, J. Comp. Appl. Math., 110 (1999), 225-239. doi: 10.1016/S0377-0427(99)00196-X.

[4]

C. BardosF. Golse and Y. Sone, Half-space problems for the Boltzmann equation: A survey, J. Stat. Phys., 124 (2006), 275-300. doi: 10.1007/s10955-006-9077-z.

[5]

C. Bardos and X. Yang, The classification of well-posed kinetic boundary layer for hard sphere gas mixtures, Comm. Partial Differ. Equ., 37 (2012), 1286-1314. doi: 10.1080/03605302.2011.624149.

[6]

N. Bernhoff, On half-space problems for the linearized discrete Boltzmann equation, Riv. Mat. Univ. Parma, 9 (2008), 73-124.

[7]

N. Bernhoff, On half-space problems for the weakly non-linear discrete Boltzmann equation, Kinet. Relat. Models, 3 (2010), 195-222. doi: 10.3934/krm.2010.3.195.

[8]

N. Bernhoff, Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures, Kinet. Relat. Models, 5 (2012), 1-19. doi: 10.3934/krm.2012.5.1.

[9]

N. Bernhoff, Half-space problem for the discrete Boltzmann equation: Condensing vapor flow in the presence of a non-condensable gas, J. Stat. Phys., 147 (2012), 1156-1181. doi: 10.1007/s10955-012-0513-y.

[10]

N. Bernhoff, Half-space problems for a linearized discrete quantum kinetic equation, J. Stat. Phys., 159 (2015), 358-379. doi: 10.1007/s10955-015-1190-4.

[11]

N. Bernhoff, Discrete velocity models for multicomponent mixtures and polyatomic molecules without nonphysical collision invariants and shock profiles, AIP Conference Proceedings, 1786 (2016), 040005. doi: 10.1063/1.4967543.

[12]

N. Bernhoff, Discrete velocity models for polyatomic molecules without nonphysical collision invariants, Preprint.

[13]

N. Bernhoff and A. Bobylev, Weak shock waves for the general discrete velocity model of the Boltzmann equation, Commun. Math. Sci., 5 (2007), 815-832. doi: 10.4310/CMS.2007.v5.n4.a4.

[14]

N. Bernhoff and M. C. Vinerean, Discrete velocity models for multicomponent mixtures without nonphysical collision invariants, J. Stat. Phys., 165 (2016), 434-453. doi: 10.1007/s10955-016-1624-7.

[15]

G. A. Bird, Molecular gas dynamics Clarendon-Press, 1976.

[16]

A. V. Bobylev and N. Bernhoff, Discrete velocity models and dynamical systems, in Lecture Notes on the Discretization of the Boltzmann Equation (eds. N. Bellomo and R. Gatignol), World Scientific, 63 (2003), 203–222. doi: 10.1142/9789812796905_0008.

[17]

A. V. Bobylev and C. Cercignani, Discrete velocity models without non-physical invariants, J. Stat. Phys., 97 (1999), 677-686. doi: 10.1023/A:1004615309058.

[18]

A. V. BobylevA. Palczewski and J. Schneider, On approximation of the Boltzmann equation by discrete velocity models, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 639-644.

[19]

A. V. Bobylev and M. C. Vinerean, Construction of discrete kinetic models with given invariants, J. Stat. Phys., 132 (2008), 153-170. doi: 10.1007/s10955-008-9536-9.

[20]

C. Buet, Conservative and entropy schemes for Boltzmann collision operator of polyatomic gases, Math. Mod. Meth. Appl. Sci., 7 (1997), 165-192. doi: 10.1142/S0218202597000116.

[21]

H. Cabannes, The discrete Boltzmann equation, 1980 (2003), Lecture notes given at the University of California at Berkeley, 1980, revised with R. Gatignol and L-S. Luo, 2003.

[22]

C. Cercignani, The Boltzmann Equation and its Applications Springer-Verlag, 1988. doi: 10.1007/978-1-4612-1039-9.

[23]

C. Cercignani, Rarefied Gas Dynamics Cambridge University Press, 2000.

[24]

C. CercignaniR. IllnerM. Pulvirenti and M. Shinbrot, On nonlinear stationary half-space problems in discrete kinetic theory, J. Stat. Phys., 52 (1988), 885-896. doi: 10.1007/BF01019733.

[25]

F. CoronF. Golse and C. Sulem, A classification of well-posed kinetic layer problems, Comm. Pure Appl. Math., 41 (1988), 409-435. doi: 10.1002/cpa.3160410403.

[26]

A. Ern and V. Giovangigli, Multicomponent Transport Algorithms Springer-Verlag, 1994.

[27]

L. FainsilberP. Kurlberg and B. Wennberg, Lattice points on circles and discrete velocity models for the Boltzmann equation, Siam J. Math. Anal., 37 (2006), 1903-1922. doi: 10.1137/040618916.

[28]

R. Gatignol, Théorie Cinétique des Gaz á Répartition Discréte de Vitesses Springer-Verlag, 1975.

[29]

F. Golse, Analysis of the boundary layer equation in the kinetic theory of gases, Bull. Inst. Math. Acad. Sin., 3 (2008), 211-242.

[30]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999), 197-219.

[31]

S. Kawashima and S. Nishibata, Existence of a stationary wave for the discrete Boltzmann equation in the half space, Comm. Math. Phys., 207 (1999), 385-409. doi: 10.1007/s002200050730.

[32]

S. Kawashima and S. Nishibata, Stationary waves for the discrete Boltzmann equation in the half space with reflective boundaries, Comm. Math. Phys., 211 (2000), 183-206. doi: 10.1007/s002200050808.

[33]

T. R. Kirkpatrick and J. R. Dorfman, Transport in a dilute but condensed nonideal Bose gas: Kinetic equations, J. Low Temp. Phys., 58 (1985), 301-331. doi: 10.1007/BF00681309.

[34]

C. MouhotL. Pareschi and T. Rey, Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation, Math. Model. Numer. Anal., 47 (2013), 1515-1531. doi: 10.1051/m2an/2013078.

[35]

A. MunafóJ. R. HaackI. M. Gamba and T. E. Magin, A spectral-Lagrangian Boltzmann solver for a multi-energy level gas, J. Comput. Phys., 264 (2014), 152-176. doi: 10.1016/j.jcp.2014.01.036.

[36]

L. W. Nordheim, On the kinetic methods in the new statistics and its applications in the electron theory of conductivity, Proc. Roy. Soc. London Ser. A, 119 (1928), 689-698. doi: 10.1098/rspa.1928.0126.

[37]

A. PalczewskiJ. Schneider and A. V. Bobylev, A consistency result for a discrete-velocity model of the Boltzmann equation, SIAM J. Numer. Anal., 34 (1997), 1865-1883. doi: 10.1137/S0036142995289007.

[38]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases, Phys. A, 272 (1999), 563-573. doi: 10.1016/S0378-4371(99)00336-2.

[39]

Y. Sone, Kinetic Theory and Fluid Dynamics Birkhauser, 2002. doi: 10.1007/978-1-4612-0061-1.

[40]

Y. Sone, Molecular Gas Dynamics Birkhauser, 2007. doi: 10.1007/978-0-8176-4573-1.

[41]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Phys. Rev., 43 (1933), 552-561. doi: 10.1103/PhysRev.43.552.

[42]

S. Ukai, On the half-space problem for the discrete velocity model of the Boltzmann equation, in Advances in Nonlinear Partial Differential Equations and Stochastics (eds. S. Kawashima and T. Yanagisawa), World Scientific, 48 (1998), 160–174. doi: 10.1142/9789812816481_0005.

[43]

S. UkaiT. Yang and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation: Ⅰ. Existence, Comm. Math. Phys., 236 (2003), 373-393. doi: 10.1007/s00220-003-0822-8.

[44]

X. Yang, The solutions for the boundary layer problem of Boltzmann equation in a half-space, J. Stat. Phys., 143 (2011), 168-196. doi: 10.1007/s10955-011-0158-2.

[45]

E. ZarembaT. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperatures, J. Low Temp. Phys., 116 (1999), 277-345.

show all references

References:
[1]

L. Arkeryd, On low temperature kinetic theory; spin diffusion, Bose-Einstein condensates, anyons, J. Stat. Phys., 150 (2013), 1063-1079. doi: 10.1007/s10955-013-0695-y.

[2]

L. Arkeryd and A. Nouri, A Milne problem from a Bose condensate with excitations, Kinet. Relat. Models, 6 (2013), 671-686. doi: 10.3934/krm.2013.6.671.

[3]

H. Babovsky, Kinetic boundary layers: On the adequate discretization of the Boltzmann collision operator, J. Comp. Appl. Math., 110 (1999), 225-239. doi: 10.1016/S0377-0427(99)00196-X.

[4]

C. BardosF. Golse and Y. Sone, Half-space problems for the Boltzmann equation: A survey, J. Stat. Phys., 124 (2006), 275-300. doi: 10.1007/s10955-006-9077-z.

[5]

C. Bardos and X. Yang, The classification of well-posed kinetic boundary layer for hard sphere gas mixtures, Comm. Partial Differ. Equ., 37 (2012), 1286-1314. doi: 10.1080/03605302.2011.624149.

[6]

N. Bernhoff, On half-space problems for the linearized discrete Boltzmann equation, Riv. Mat. Univ. Parma, 9 (2008), 73-124.

[7]

N. Bernhoff, On half-space problems for the weakly non-linear discrete Boltzmann equation, Kinet. Relat. Models, 3 (2010), 195-222. doi: 10.3934/krm.2010.3.195.

[8]

N. Bernhoff, Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures, Kinet. Relat. Models, 5 (2012), 1-19. doi: 10.3934/krm.2012.5.1.

[9]

N. Bernhoff, Half-space problem for the discrete Boltzmann equation: Condensing vapor flow in the presence of a non-condensable gas, J. Stat. Phys., 147 (2012), 1156-1181. doi: 10.1007/s10955-012-0513-y.

[10]

N. Bernhoff, Half-space problems for a linearized discrete quantum kinetic equation, J. Stat. Phys., 159 (2015), 358-379. doi: 10.1007/s10955-015-1190-4.

[11]

N. Bernhoff, Discrete velocity models for multicomponent mixtures and polyatomic molecules without nonphysical collision invariants and shock profiles, AIP Conference Proceedings, 1786 (2016), 040005. doi: 10.1063/1.4967543.

[12]

N. Bernhoff, Discrete velocity models for polyatomic molecules without nonphysical collision invariants, Preprint.

[13]

N. Bernhoff and A. Bobylev, Weak shock waves for the general discrete velocity model of the Boltzmann equation, Commun. Math. Sci., 5 (2007), 815-832. doi: 10.4310/CMS.2007.v5.n4.a4.

[14]

N. Bernhoff and M. C. Vinerean, Discrete velocity models for multicomponent mixtures without nonphysical collision invariants, J. Stat. Phys., 165 (2016), 434-453. doi: 10.1007/s10955-016-1624-7.

[15]

G. A. Bird, Molecular gas dynamics Clarendon-Press, 1976.

[16]

A. V. Bobylev and N. Bernhoff, Discrete velocity models and dynamical systems, in Lecture Notes on the Discretization of the Boltzmann Equation (eds. N. Bellomo and R. Gatignol), World Scientific, 63 (2003), 203–222. doi: 10.1142/9789812796905_0008.

[17]

A. V. Bobylev and C. Cercignani, Discrete velocity models without non-physical invariants, J. Stat. Phys., 97 (1999), 677-686. doi: 10.1023/A:1004615309058.

[18]

A. V. BobylevA. Palczewski and J. Schneider, On approximation of the Boltzmann equation by discrete velocity models, C. R. Acad. Sci. Paris Sér. I Math., 320 (1995), 639-644.

[19]

A. V. Bobylev and M. C. Vinerean, Construction of discrete kinetic models with given invariants, J. Stat. Phys., 132 (2008), 153-170. doi: 10.1007/s10955-008-9536-9.

[20]

C. Buet, Conservative and entropy schemes for Boltzmann collision operator of polyatomic gases, Math. Mod. Meth. Appl. Sci., 7 (1997), 165-192. doi: 10.1142/S0218202597000116.

[21]

H. Cabannes, The discrete Boltzmann equation, 1980 (2003), Lecture notes given at the University of California at Berkeley, 1980, revised with R. Gatignol and L-S. Luo, 2003.

[22]

C. Cercignani, The Boltzmann Equation and its Applications Springer-Verlag, 1988. doi: 10.1007/978-1-4612-1039-9.

[23]

C. Cercignani, Rarefied Gas Dynamics Cambridge University Press, 2000.

[24]

C. CercignaniR. IllnerM. Pulvirenti and M. Shinbrot, On nonlinear stationary half-space problems in discrete kinetic theory, J. Stat. Phys., 52 (1988), 885-896. doi: 10.1007/BF01019733.

[25]

F. CoronF. Golse and C. Sulem, A classification of well-posed kinetic layer problems, Comm. Pure Appl. Math., 41 (1988), 409-435. doi: 10.1002/cpa.3160410403.

[26]

A. Ern and V. Giovangigli, Multicomponent Transport Algorithms Springer-Verlag, 1994.

[27]

L. FainsilberP. Kurlberg and B. Wennberg, Lattice points on circles and discrete velocity models for the Boltzmann equation, Siam J. Math. Anal., 37 (2006), 1903-1922. doi: 10.1137/040618916.

[28]

R. Gatignol, Théorie Cinétique des Gaz á Répartition Discréte de Vitesses Springer-Verlag, 1975.

[29]

F. Golse, Analysis of the boundary layer equation in the kinetic theory of gases, Bull. Inst. Math. Acad. Sin., 3 (2008), 211-242.

[30]

M. Groppi and G. Spiga, Kinetic approach to chemical reactions and inelastic transitions in a rarefied gas, J. Math. Chem., 26 (1999), 197-219.

[31]

S. Kawashima and S. Nishibata, Existence of a stationary wave for the discrete Boltzmann equation in the half space, Comm. Math. Phys., 207 (1999), 385-409. doi: 10.1007/s002200050730.

[32]

S. Kawashima and S. Nishibata, Stationary waves for the discrete Boltzmann equation in the half space with reflective boundaries, Comm. Math. Phys., 211 (2000), 183-206. doi: 10.1007/s002200050808.

[33]

T. R. Kirkpatrick and J. R. Dorfman, Transport in a dilute but condensed nonideal Bose gas: Kinetic equations, J. Low Temp. Phys., 58 (1985), 301-331. doi: 10.1007/BF00681309.

[34]

C. MouhotL. Pareschi and T. Rey, Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation, Math. Model. Numer. Anal., 47 (2013), 1515-1531. doi: 10.1051/m2an/2013078.

[35]

A. MunafóJ. R. HaackI. M. Gamba and T. E. Magin, A spectral-Lagrangian Boltzmann solver for a multi-energy level gas, J. Comput. Phys., 264 (2014), 152-176. doi: 10.1016/j.jcp.2014.01.036.

[36]

L. W. Nordheim, On the kinetic methods in the new statistics and its applications in the electron theory of conductivity, Proc. Roy. Soc. London Ser. A, 119 (1928), 689-698. doi: 10.1098/rspa.1928.0126.

[37]

A. PalczewskiJ. Schneider and A. V. Bobylev, A consistency result for a discrete-velocity model of the Boltzmann equation, SIAM J. Numer. Anal., 34 (1997), 1865-1883. doi: 10.1137/S0036142995289007.

[38]

A. Rossani and G. Spiga, A note on the kinetic theory of chemically reacting gases, Phys. A, 272 (1999), 563-573. doi: 10.1016/S0378-4371(99)00336-2.

[39]

Y. Sone, Kinetic Theory and Fluid Dynamics Birkhauser, 2002. doi: 10.1007/978-1-4612-0061-1.

[40]

Y. Sone, Molecular Gas Dynamics Birkhauser, 2007. doi: 10.1007/978-0-8176-4573-1.

[41]

E. A. Uehling and G. E. Uhlenbeck, Transport phenomena in Einstein-Bose and Fermi-Dirac gases, Phys. Rev., 43 (1933), 552-561. doi: 10.1103/PhysRev.43.552.

[42]

S. Ukai, On the half-space problem for the discrete velocity model of the Boltzmann equation, in Advances in Nonlinear Partial Differential Equations and Stochastics (eds. S. Kawashima and T. Yanagisawa), World Scientific, 48 (1998), 160–174. doi: 10.1142/9789812816481_0005.

[43]

S. UkaiT. Yang and S.-H. Yu, Nonlinear boundary layers of the Boltzmann equation: Ⅰ. Existence, Comm. Math. Phys., 236 (2003), 373-393. doi: 10.1007/s00220-003-0822-8.

[44]

X. Yang, The solutions for the boundary layer problem of Boltzmann equation in a half-space, J. Stat. Phys., 143 (2011), 168-196. doi: 10.1007/s10955-011-0158-2.

[45]

E. ZarembaT. Nikuni and A. Griffin, Dynamics of trapped Bose gases at finite temperatures, J. Low Temp. Phys., 116 (1999), 277-345.

Figure 1.  27-velocity model for a mixture of three species with mass ratios 2, 3/2, and 3
Figure 2.  24-velocity supernormal DVM for internal energies E, 2E, and 3E
[1]

Niclas Bernhoff. Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinetic & Related Models, 2012, 5 (1) : 1-19. doi: 10.3934/krm.2012.5.1

[2]

Niclas Bernhoff. On half-space problems for the weakly non-linear discrete Boltzmann equation. Kinetic & Related Models, 2010, 3 (2) : 195-222. doi: 10.3934/krm.2010.3.195

[3]

Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic & Related Models, 2010, 3 (1) : 35-58. doi: 10.3934/krm.2010.3.35

[4]

Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

[5]

Tai-Ping Liu, Shih-Hsien Yu. Boltzmann equation, boundary effects. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 145-157. doi: 10.3934/dcds.2009.24.145

[6]

Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic & Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025

[7]

Alexander V. Bobylev, Irene M. Gamba. Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules. Kinetic & Related Models, 2017, 10 (3) : 573-585. doi: 10.3934/krm.2017023

[8]

Yoshinori Morimoto. A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinetic & Related Models, 2012, 5 (3) : 551-561. doi: 10.3934/krm.2012.5.551

[9]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks & Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

[10]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[11]

Xinkuan Chai. The Boltzmann equation near Maxwellian in the whole space. Communications on Pure & Applied Analysis, 2011, 10 (2) : 435-458. doi: 10.3934/cpaa.2011.10.435

[12]

Ralf Kirsch, Sergej Rjasanow. The uniformly heated inelastic Boltzmann equation in Fourier space. Kinetic & Related Models, 2010, 3 (3) : 445-456. doi: 10.3934/krm.2010.3.445

[13]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[14]

Laurent Gosse. Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension. Kinetic & Related Models, 2012, 5 (2) : 283-323. doi: 10.3934/krm.2012.5.283

[15]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic & Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[16]

Yanqin Fang, Jihui Zhang. Nonexistence of positive solution for an integral equation on a Half-Space $R_+^n$. Communications on Pure & Applied Analysis, 2013, 12 (2) : 663-678. doi: 10.3934/cpaa.2013.12.663

[17]

Chérif Amrouche, Yves Raudin. Singular boundary conditions and regularity for the biharmonic problem in the half-space. Communications on Pure & Applied Analysis, 2007, 6 (4) : 957-982. doi: 10.3934/cpaa.2007.6.957

[18]

Chérif Amrouche, Huy Hoang Nguyen. Elliptic problems with $L^1$-data in the half-space. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 369-397. doi: 10.3934/dcdss.2012.5.369

[19]

Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353

[20]

Renjun Duan, Shota Sakamoto. Solution to the Boltzmann equation in velocity-weighted Chemin-Lerner type spaces. Kinetic & Related Models, 2018, 11 (6) : 1301-1331. doi: 10.3934/krm.2018051

2017 Impact Factor: 1.219

Metrics

  • PDF downloads (9)
  • HTML views (66)
  • Cited by (2)

Other articles
by authors

[Back to Top]