• Previous Article
    The two dimensional Vlasov-Poisson system with steady spatial asymptotics
  • KRM Home
  • This Issue
  • Next Article
    Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations
December  2017, 10(4): 957-976. doi: 10.3934/krm.2017038

Grossly determined solutions for a Boltzmann-like equation

Department of Mathematics, Bradley University, Bradley Hall 445, Peoria, IL 61625, USA

Received  October 2015 Revised  December 2016 Published  March 2017

Fund Project: The author is supported by NSF grant DMS 08-38434 "EMSW21-MCTP: Research Experience for Graduate Students" and from the Caterpillar Fellowship Grant at Bradley University

In gas dynamics, the connection between the continuum physics model offered by the Navier-Stokes equations and the heat equation and the molecular model offered by the kinetic theory of gases has been understood for some time, especially through the work of Chapman and Enskog, but it has never been established rigorously. This paper established a precise bridge between these two models for a simple linear Boltzman-like equation. Specifically a special class of solutions, the grossly determined solutions, of this kinetic model are shown to exist and satisfy closed form balance equations representing a class of continuum model solutions.

Citation: Thomas Carty. Grossly determined solutions for a Boltzmann-like equation. Kinetic & Related Models, 2017, 10 (4) : 957-976. doi: 10.3934/krm.2017038
References:
[1]

R. Alonso, Boltzmann-type Equations and Their Applications Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2015. Google Scholar

[2]

R. Alonso and W. Sun, The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338 (2015), 1233-1286. doi: 10.1007/s00220-015-2395-8. Google Scholar

[3]

R. J. Alonso and I. M. Gamba, Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137 (2009), 1147-1165. doi: 10.1007/s10955-009-9873-3. Google Scholar

[4]

L. Arkeryd, Stability in L1 for the spatially homogeneous Boltzmann equation, Archive for Rational Mechanics and Analysis, 103 (1988), 151-167. doi: 10.1007/BF00251506. Google Scholar

[5]

T. E. Carty, Elementary Solutions for a model Boltzmann Equation in one-dimension and the connection to Grossly Determined Solutions, preprint, arXiv: 1608.03510.Google Scholar

[6]

K. M. Case, Elementary solutions of the transport equation and their applications, Annals of Physics, 9 (1960), 1-23. doi: 10.1016/0003-4916(60)90060-9. Google Scholar

[7]

C. Cercignani, Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics, Journal of Quantitative Spectroscopy and Radiative Transfer, 11 (1971), 973-985. doi: 10.1016/0022-4073(71)90068-9. Google Scholar

[8]

C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34 (1982), 231-241. Google Scholar

[9]

C. Cercignani, Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem, Annals of Physics, 20 (1962), 219-233. doi: 10.1016/0003-4916(62)90199-9. Google Scholar

[10]

C. Cercignani, R. Illner and M. Pulvierenti, The Mathematical Theory of Dilute Gases Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8. Google Scholar

[11]

C. Cercignani and F. Sernagiotto, The method of elementary solutions for time-dependent problems in linearized kinetic theory, Annals of Physics, 30 (1964), 154-167. doi: 10.1016/0003-4916(64)90308-2. Google Scholar

[12]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9. Google Scholar

[13]

L. Desvillettes and C. Mouhot, Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptot. Anal., 54 (2007), 235-245. Google Scholar

[14]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 130 (1989), 321-366. doi: 10.2307/1971423. Google Scholar

[15]

E. Dolera, On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules, Boll. Unione Mat. Ital.(9), 4 (2011), 47-68. Google Scholar

[16]

S. Friedlander and D. Serre, Handbook of mathematical fluid dynamics Elsevier, 2002.Google Scholar

[17]

L. S. García-ColínR. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465 (2008), 149-189. Google Scholar

[18]

L. Gosse, Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models, 5 (2012), 283-323. doi: 10.3934/krm.2012.5.283. Google Scholar

[19]

S. Harris, An Introduction to the Theory of the Boltzmann Equation Dover Books on Physics, 2012.Google Scholar

[20]

L. Hörmander, Linear Partial Differential Operators Springer Verlag, Berlin, 1976. Google Scholar

[21]

S. JinL. Pareschi and M. Slemrod, A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion, Acta Math. Appl. Sin. Engl. Ser., 18 (2002), 37-62. doi: 10.1007/s102550200003. Google Scholar

[22]

S. Kaniel and M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Comm. Math. Phys., 58 (1978), 65-84. Google Scholar

[23]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501. doi: 10.1016/S0294-1449(99)80025-0. Google Scholar

[24]

C. Mouhot, Quantitative linearized study of the Boltzmann collision operator and applications, Commun. Math. Sci., 1 (2007), 73-86. doi: 10.4310/CMS.2007.v5.n5.a6. Google Scholar

[25]

M. Slemrod, Constitutive relations for monatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion, Arch. Ration. Mech. Anal., 150 (1999), 1-22. doi: 10.1007/s002050050178. Google Scholar

[26]

C. Truesdell and R. G. Muncaster, Fundamentals Of Maxwell's Kinetic Theory Of A Simple Monatomic Gas Treated as a branch of rational mechanics, Pure and Applied Mathematics, Vol. 83, Academic Press, 1980. Google Scholar

[27]

C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490. doi: 10.1007/s00220-002-0777-1. Google Scholar

show all references

References:
[1]

R. Alonso, Boltzmann-type Equations and Their Applications Publicações Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2015. Google Scholar

[2]

R. Alonso and W. Sun, The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338 (2015), 1233-1286. doi: 10.1007/s00220-015-2395-8. Google Scholar

[3]

R. J. Alonso and I. M. Gamba, Distributional and classical solutions to the Cauchy Boltzmann problem for soft potentials with integrable angular cross section, J. Stat. Phys., 137 (2009), 1147-1165. doi: 10.1007/s10955-009-9873-3. Google Scholar

[4]

L. Arkeryd, Stability in L1 for the spatially homogeneous Boltzmann equation, Archive for Rational Mechanics and Analysis, 103 (1988), 151-167. doi: 10.1007/BF00251506. Google Scholar

[5]

T. E. Carty, Elementary Solutions for a model Boltzmann Equation in one-dimension and the connection to Grossly Determined Solutions, preprint, arXiv: 1608.03510.Google Scholar

[6]

K. M. Case, Elementary solutions of the transport equation and their applications, Annals of Physics, 9 (1960), 1-23. doi: 10.1016/0003-4916(60)90060-9. Google Scholar

[7]

C. Cercignani, Methods of solution of the linearized Boltzmann equation for rarefied gas dynamics, Journal of Quantitative Spectroscopy and Radiative Transfer, 11 (1971), 973-985. doi: 10.1016/0022-4073(71)90068-9. Google Scholar

[8]

C. Cercignani, H-theorem and trend to equilibrium in the kinetic theory of gases, Arch. Mech. (Arch. Mech. Stos.), 34 (1982), 231-241. Google Scholar

[9]

C. Cercignani, Elementary solutions of the linearized gas-dynamics Boltzmann equation and their application to the slip-flow problem, Annals of Physics, 20 (1962), 219-233. doi: 10.1016/0003-4916(62)90199-9. Google Scholar

[10]

C. Cercignani, R. Illner and M. Pulvierenti, The Mathematical Theory of Dilute Gases Applied Mathematical Sciences, 106, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4419-8524-8. Google Scholar

[11]

C. Cercignani and F. Sernagiotto, The method of elementary solutions for time-dependent problems in linearized kinetic theory, Annals of Physics, 30 (1964), 154-167. doi: 10.1016/0003-4916(64)90308-2. Google Scholar

[12]

L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Invent. Math., 159 (2005), 245-316. doi: 10.1007/s00222-004-0389-9. Google Scholar

[13]

L. Desvillettes and C. Mouhot, Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations with soft potentials, Asymptot. Anal., 54 (2007), 235-245. Google Scholar

[14]

R. J. DiPerna and P.-L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math., 130 (1989), 321-366. doi: 10.2307/1971423. Google Scholar

[15]

E. Dolera, On the computation of the spectrum of the linearized Boltzmann collision operator for Maxwellian molecules, Boll. Unione Mat. Ital.(9), 4 (2011), 47-68. Google Scholar

[16]

S. Friedlander and D. Serre, Handbook of mathematical fluid dynamics Elsevier, 2002.Google Scholar

[17]

L. S. García-ColínR. M. Velasco and F. J. Uribe, Beyond the Navier-Stokes equations: Burnett hydrodynamics, Phys. Rep., 465 (2008), 149-189. Google Scholar

[18]

L. Gosse, Well-balanced schemes using elementary solutions for linear models of the Boltzmann equation in one space dimension, Kinetic and Related Models, 5 (2012), 283-323. doi: 10.3934/krm.2012.5.283. Google Scholar

[19]

S. Harris, An Introduction to the Theory of the Boltzmann Equation Dover Books on Physics, 2012.Google Scholar

[20]

L. Hörmander, Linear Partial Differential Operators Springer Verlag, Berlin, 1976. Google Scholar

[21]

S. JinL. Pareschi and M. Slemrod, A relaxation scheme for solving the Boltzmann equation based on the Chapman-Enskog expansion, Acta Math. Appl. Sin. Engl. Ser., 18 (2002), 37-62. doi: 10.1007/s102550200003. Google Scholar

[22]

S. Kaniel and M. Shinbrot, The Boltzmann equation. Ⅰ. Uniqueness and local existence, Comm. Math. Phys., 58 (1978), 65-84. Google Scholar

[23]

S. Mischler and B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 16 (1999), 467-501. doi: 10.1016/S0294-1449(99)80025-0. Google Scholar

[24]

C. Mouhot, Quantitative linearized study of the Boltzmann collision operator and applications, Commun. Math. Sci., 1 (2007), 73-86. doi: 10.4310/CMS.2007.v5.n5.a6. Google Scholar

[25]

M. Slemrod, Constitutive relations for monatomic gases based on a generalized rational approximation to the sum of the Chapman-Enskog expansion, Arch. Ration. Mech. Anal., 150 (1999), 1-22. doi: 10.1007/s002050050178. Google Scholar

[26]

C. Truesdell and R. G. Muncaster, Fundamentals Of Maxwell's Kinetic Theory Of A Simple Monatomic Gas Treated as a branch of rational mechanics, Pure and Applied Mathematics, Vol. 83, Academic Press, 1980. Google Scholar

[27]

C. Villani, Cercignani's conjecture is sometimes true and always almost true, Comm. Math. Phys., 234 (2003), 455-490. doi: 10.1007/s00220-002-0777-1. Google Scholar

Figure 1.  The graph of $ |\boldsymbol{\xi}|=\Xi(c)$
[1]

Marzia Bisi, Giampiero Spiga. A Boltzmann-type model for market economy and its continuous trading limit. Kinetic & Related Models, 2010, 3 (2) : 223-239. doi: 10.3934/krm.2010.3.223

[2]

Carlo Brugna, Giuseppe Toscani. Boltzmann-type models for price formation in the presence of behavioral aspects. Networks & Heterogeneous Media, 2015, 10 (3) : 543-557. doi: 10.3934/nhm.2015.10.543

[3]

Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453

[4]

Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187

[5]

Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353

[6]

Marcel Braukhoff. Semiconductor Boltzmann-Dirac-Benney equation with a BGK-type collision operator: Existence of solutions vs. ill-posedness. Kinetic & Related Models, 2019, 12 (2) : 445-482. doi: 10.3934/krm.2019019

[7]

C. David Levermore, Weiran Sun. Compactness of the gain parts of the linearized Boltzmann operator with weakly cutoff kernels. Kinetic & Related Models, 2010, 3 (2) : 335-351. doi: 10.3934/krm.2010.3.335

[8]

Miguel Escobedo, Minh-Binh Tran. Convergence to equilibrium of a linearized quantum Boltzmann equation for bosons at very low temperature. Kinetic & Related Models, 2015, 8 (3) : 493-531. doi: 10.3934/krm.2015.8.493

[9]

Léo Glangetas, Hao-Guang Li, Chao-Jiang Xu. Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2016, 9 (2) : 299-371. doi: 10.3934/krm.2016.9.299

[10]

Léo Glangetas, Mohamed Najeme. Analytical regularizing effect for the radial and spatially homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (2) : 407-427. doi: 10.3934/krm.2013.6.407

[11]

Torsten Keßler, Sergej Rjasanow. Fully conservative spectral Galerkin–Petrov method for the inhomogeneous Boltzmann equation. Kinetic & Related Models, 2019, 12 (3) : 507-549. doi: 10.3934/krm.2019021

[12]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[13]

Seiji Ukai. Time-periodic solutions of the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 579-596. doi: 10.3934/dcds.2006.14.579

[14]

Leif Arkeryd, Raffaele Esposito, Rossana Marra, Anne Nouri. Exponential stability of the solutions to the Boltzmann equation for the Benard problem. Kinetic & Related Models, 2012, 5 (4) : 673-695. doi: 10.3934/krm.2012.5.673

[15]

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Bounded solutions of the Boltzmann equation in the whole space. Kinetic & Related Models, 2011, 4 (1) : 17-40. doi: 10.3934/krm.2011.4.17

[16]

Marco Cannone, Grzegorz Karch. On self-similar solutions to the homogeneous Boltzmann equation. Kinetic & Related Models, 2013, 6 (4) : 801-808. doi: 10.3934/krm.2013.6.801

[17]

Juhi Jang, Ning Jiang. Acoustic limit of the Boltzmann equation: Classical solutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 869-882. doi: 10.3934/dcds.2009.25.869

[18]

Hongjun Yu. Global classical solutions to the Boltzmann equation with external force. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1647-1668. doi: 10.3934/cpaa.2009.8.1647

[19]

Ricardo J. Alonso, Irene M. Gamba. Gain of integrability for the Boltzmann collisional operator. Kinetic & Related Models, 2011, 4 (1) : 41-51. doi: 10.3934/krm.2011.4.41

[20]

Hao Tang, Zhengrong Liu. On the Cauchy problem for the Boltzmann equation in Chemin-Lerner type spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2229-2256. doi: 10.3934/dcds.2016.36.2229

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (10)
  • HTML views (69)
  • Cited by (1)

Other articles
by authors

[Back to Top]