\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cucker-Smale model with normalized communication weights and time delay

  • * Corresponding author: Jan Haskovec

    * Corresponding author: Jan Haskovec

YPC was supported by Engineering and Physical Sciences Research Council (EP/K00804/1) and ERC-Starting grant HDSPCONTR "High-Dimensional Sparse Optimal Control". He was also supported by the Alexander Humboldt Foundation through the Humboldt Research Fellowship for Postdoctoral Researchers. JH was supported by KAUST baseline funds and KAUST grant no. 1000000193

Abstract / Introduction Full Text(HTML) Figure(3) Related Papers Cited by
  • We study a Cucker-Smale-type system with time delay in which agents interact with each other through normalized communication weights. We construct a Lyapunov functional for the system and provide sufficient conditions for asymptotic flocking, i.e., convergence to a common velocity vector. We also carry out a rigorous limit passage to the mean-field limit of the particle system as the number of particles tends to infinity. For the resulting Vlasov-type equation we prove the existence, stability and large-time behavior of measure-valued solutions. This is, to our best knowledge, the first such result for a Vlasov-type equation with time delay. We also present numerical simulations of the discrete system with few particles that provide further insights into the flocking and oscillatory behaviors of the particle velocities depending on the size of the time delay.

    Mathematics Subject Classification: Primary: 34A12, 34D05; Secondary: 35Q83.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The system with two particles: Particle velocities $v_1(t)$, $v_2(t)$ as solututions of (30) (left panels) and velocity diameters $d_V(t)$ (right panels, logarithmic scale) for $\tau=0.25$ (first row) and $\tau=1$ (second row). The initial condition is constant, $v_1(t)\equiv 1$, $v_2(t)\equiv -1$ for $t\in[-\tau,0]$

    Figure 2.  The system with three particles: particle velocities $v_1(t)$, $v_2(t), v_3(t)$ as solutions of (5)–(7) (left panels) and velocity diameters $d_V(t)$ (right panels, logarithmic scale) for $\tau=0.25$ (first row) and $\tau=1$ (second row), with exponentially decaying influence function $\psi(s) = e^{-s}$. The initial condition is in both cases given by (33)–(34)

    Figure 3.  The system with four particles: particle velocities as solutions of (5)–(7) (left panels) and velocity diameters $d_V(t)$ (right panels, logarithmic scale) for $\tau=0.25$ (first row) and $\tau=1$ (second row), with the influence function $\psi(s) = {(1+s^2)^{-4}}$. The initial condition is in both cases given by (35)–(36)

  •   S. Ahn  and  S.-Y Ha , Stochastic flocking dynamics of the Cucker-Smale model with multiplicative white noises, J. Math. Phys., 51 (2010) , 103301, 17pp.  doi: 10.1063/1.3496895.
      J. Carrillo , Y.-P. Choi  and  M. Hauray , Local well-posedness of the generalized Cucker-Smale model with singular kernels, ESAIM Proc., 47 (2014) , 17-35.  doi: 10.1051/proc/201447002.
      J. A. Carrillo, Y.-P. Choi and M. Hauray, The derivation of swarming models: Mean-field limit and Wasserstein distances, Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis and Simulation (eds. A. Muntean and F. Toschi), Springer Series: CISM International Centre for Mechanical Sciences, 533 (2014), 1–46. doi: 10.1007/978-3-7091-1785-9_1.
      J. Carrillo, Y. -P. Choi, M. Hauray and S. Salem, Mean-field limit for collective behavior models with sharp sensitivity regions, preprint, arXiv: 1510.02315.
      J. Carrillo, Y. -P. Choi, P. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker-Smale interactions, preprint, arXiv: 1609.03447.
      J. Carrillo, Y. -P. Choi and S. Pérez, A review an attractive-repulsive hydrodynamics for consensus in collective behavior, in Active Particles Vol. Ⅰ -Advances in Theory, Models, Applications (eds. N. Bellomo, P. Degond and E. Tadmor), Birkhäuser-Springer Series: Modelling and Simulation in Science and Technology, (2017).
      J. Cañizo , J. Carrillo  and  J. Rosado , A well-posedness theory in measures for some kinetic models of collective motion, Math. Mod. Meth. Appl. Sci., 21 (2011) , 515-539.  doi: 10.1142/S0218202511005131.
      J. Carrillo , M. Fornasier , J. Rosado  and  G. Toscani , Asymptotic Flocking Dynamics for the kinetic Cucker-Smale model, SIAM J. Math. Anal., 42 (2010) , 218-236.  doi: 10.1137/090757290.
      J. Carrillo, M. Fornasier, G. Toscani and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, in Mathematical Modeling of Collective Behaviour in Socio-Economic and Life Sciences (eds. G. Naldi, L. Pareschi and G. Toscani), Birkhäuser Series: Modelling and Simulation in Science and Technology, (2010), 297–336. doi: 10.1007/978-0-8176-4946-3_12.
      Y.-P. Choi , Global classical solutions of the Vlasov-Fokker-Planck equation with local alignment forces, Nonlinearity, 29 (2016) , 1887-1916.  doi: 10.1088/0951-7715/29/7/1887.
      Y. -P. Choi, S. -Y. Ha and Z. Li, Emergent dynamics of the Cucker-Smale flocking model and its variants, in Active Particles Vol. Ⅰ -Advances in Theory, Models, Applications (eds. N. Bellomo, P. Degond and E. Tadmor), Birkhäuser-Springer Series: Modelling and Simulation in Science and Technology, 2017.
      F. Cucker  and  S. Smale , Emergent behaviour in flocks, IEEE T. on Automat. Contr., 52 (2007) , 852-862.  doi: 10.1109/TAC.2007.895842.
      F. Cucker  and  S. Smale , On the mathematics of emergence, Jap. J. Math., 2 (2007) , 197-227.  doi: 10.1007/s11537-007-0647-x.
      R. Duan , M. Fornasier  and  G. Toscani , A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010) , 95-145.  doi: 10.1007/s00220-010-1110-z.
      R. Erban , J. Haskovec  and  Y. Sun , A Cucker-Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016) , 1535-1557.  doi: 10.1137/15M1030467.
      S.-Y. Ha , K. Lee  and  D. Levy , Emergence of time-asymptotic flocking in a stochastic Cucker-Smale system, Comm. Math. Sci., 7 (2009) , 453-469.  doi: 10.4310/CMS.2009.v7.n2.a9.
      S.-Y. Ha  and  J.-G. Liu , A simple proof of the Cucker-Smale flocking dynamics and mean-field limit, Comm. Math. Sci., 7 (2009) , 297-325.  doi: 10.4310/CMS.2009.v7.n2.a2.
      S.-Y. Ha  and  E. Tadmor , From particle to kinetic and hydrodynamic descriptions of flocking, Kinetic and Related models, 1 (2008) , 415-435.  doi: 10.3934/krm.2008.1.415.
      A. Halanay, Differential Equations: Stability, Oscillations, Time Lags Academic Press, New York London, 1966.
      J. Haskovec , Flocking dynamics and mean-field limit in the Cucker-Smale-type model with topological interactions, Physica D, 261 (2013) , 42-51.  doi: 10.1016/j.physd.2013.06.006.
      P.-E. Jabin , A review of the mean field limits for Vlasov equations, Kinetic and Related models, 7 (2014) , 661-711.  doi: 10.3934/krm.2014.7.661.
      Y. Liu  and  J. Wu , Flocking and asymptotic velocity of the Cucker-Smale model with processing delay, J. Math. Anal. Appl., 415 (2014) , 53-61.  doi: 10.1016/j.jmaa.2014.01.036.
      S. Motsch  and  E. Tadmor , A new model for self-organized dynamics and its flocking behaviour, J. Stat. Phys., 144 (2011) , 923-947.  doi: 10.1007/s10955-011-0285-9.
      L. Pareschi and G. Toscani, Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods Oxford University Press, 2014.
      J. Peszek , Existence of piecewise weak solutions of a discrete Cucker-Smale's flocking model with a singular communication weight, J. Differ. Equat., 257 (2014) , 2900-2925.  doi: 10.1016/j.jde.2014.06.003.
      H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences Springer, New York Dordrecht Heidelberg London, 2011. doi: 10.1007/978-1-4419-7646-8.
      D. Sumpter, Collective Animal Behavior Princeton University Press, 2010. doi: 10.1515/9781400837106.
      T. Ton , N. Linh  and  A. Yagi , Flocking and non-flocking behaviour in a stochastic Cucker-Smale system, Anal. Appl., 12 (2014) , 63-73.  doi: 10.1142/S0219530513500255.
      T. Vicsek  and  A. Zafeiris , Collective motion, Physics Reports, 517 (2012) , 71-140.  doi: 10.1016/j.physrep.2012.03.004.
  • 加载中

Figures(3)

SHARE

Article Metrics

HTML views(3542) PDF downloads(251) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return