• Previous Article
    The entropy method for reaction-diffusion systems without detailed balance: First order chemical reaction networks
  • KRM Home
  • This Issue
  • Next Article
    First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions
December  2017, 10(4): 1089-1125. doi: 10.3934/krm.2017043

Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system

1. 

Department of Mathematics, Capital Normal University, China

2. 

School of Mathematical Sciences, South China Normal University, China

3. 

Department of Mathematics and Information Sciences, Guangxi University, China

* Corresponding author: Mingying Zhong

Received  October 2016 Revised  January 2017 Published  March 2017

Fund Project: The first author is supported by the NNSFC grants No. 11225102,11231006,11461161007 and 11671384, and by the Key Project of Beijing Municipal Education Commission no. CIT and TCD2014 0323. The second author is supported by the NNSFC grants No. 11371151. The third author is supported by National Natural Science Foundation of China No. 11671100 and 11301094, Project supported by Guangxi Natural Science Foundation No. 2014GXNSFBA118020

It is interesting to analyze the mutual influence of relativistic effect and electrostatic potential force on the qualitative behaviors of charge particles simulated by the one-species relativistic Vlasov-Poisson-Landau (rVPL) system with the physical Coulombic interaction. In this paper, we first study the spectrum structure on the linearized rVPL system and obtain the optimal time decay rates of the solutions to the linearized system, and then we construct global strong solutions to the nonlinear system around a global relativistic Maxwellian. Finally we make use of time decay rates of the solutions to the linearized system and uniform energy estimates to establish the time decay of the global solution to the original Cauchy problem for the rVPL system to the absolute Maxwellian at the optimal convergence rate $(1+t)^{-3/4}$. This time rate is faster than the optimal rate $(1+t)^{-1/4}$ of classical Vlasov-Poisson-Boltzmann [2,10] and Vlasov-Poisson-Landau system [7,8,17] and this fast time decay rate is caused by the combined influence of relativistic effect and electrostatic potential force.

Citation: Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043
References:
[1]

R.-J. Duan, Global smooth dynamics of a fully ionized plasma with long-range collisions, Ann. I. H. Poincaré, 31 (2014), 751-778. doi: 10.1016/j.anihpc.2013.07.004.

[2]

R.-J. Duan and R. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[3]

R. S. Ellis and M. A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. pure et appl., 54 (1975), 125-156.

[4]

Y. Guo, The Vlasov-Poisson-Landau system in a periodic box, J. Amer. Math. Soc., 25 (2012), 759-812. doi: 10.1090/S0894-0347-2011-00722-4.

[5]

F. L. Hinton, Collisional transport in plasma. In Handbook of Plasma Physics, Volume Ⅰ: Basic Plasma Physics Ⅰ Rosenbluth M. N. and Sagdeev R. Z. (eds. ), Amsterdam: North-Holland Publishing Company, 1983, pp. 147.

[6]

T. Kato, Perturbation Theory of Linear Operator Springer, New York, 1996.

[7]

Y. Lei and H. Zhao, Negative Sobolev Spaces and the Two-species Vlasov-Maxwell-Landau System in the Whole Space, J. Funct. Anal., 267 (2014), 3710-3757. doi: 10.1016/j.jfa.2014.09.011.

[8]

Y. LeiL. Xiong and H. Zhao, One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space, Kinet. Relat. Models, 7 (2014), 551-590. doi: 10.3934/krm.2014.7.551.

[9]

M. Lemou, Linearized quantum and relativistic Fokker-Planck-Landau equations, Math. Methods Appl. Sci., 23 (2000), 1093-1119. doi: 10.1002/1099-1476(200008)23:12<1093::AID-MMA153>3.0.CO;2-8.

[10]

H. -L. Li, T. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, preprint, arXiv: 1402.3633v1, [math. AP].

[11]

H.-L. LiT. Yang and M. Zhong, Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations, Indiana Univ. Math. J., 65 (2016), 665-725. doi: 10.1512/iumj.2016.65.5730.

[12]

H.-L. LiT. YangJ. Sun and M. Zhong, Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations (in Chinese), Sci Sin Math, 46 (2016), 981-1004.

[13]

S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system, J. Differential Equations, 256 (2014), 832-857. doi: 10.1016/j.jde.2013.10.004.

[14]

T.-P. LiuT. Yang and S.-H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178-192. doi: 10.1016/j.physd.2003.07.011.

[15]

L. Luo and H.-J. Yu, Spectrum analysis of the linearized relativistic Landau equation, J. Stat. Phys., 163 (2016), 914-935. doi: 10.1007/s10955-016-1501-4.

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[17]

R. M. Strain, The Vlasov-Poisson-Landau System in $\mathbb{R}^3_x$, Arch. Rational Mech. Anal., 210 (2013), 615-671. doi: 10.1007/s00205-013-0658-0.

[18]

R. M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320. doi: 10.1007/s00220-004-1151-2.

[19]

R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian, Comm. P.D.E., 31 (2006), 417-429. doi: 10.1080/03605300500361545.

[20]

S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation Lecture Notes Series-No. 8, Hong Kong: Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, 2006.

[21]

Y. Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $\mathbb{R}^3$, SIAM J. Math. Anal., 44 (2012), 3281-3323. doi: 10.1137/120879129.

[22]

T. Yang and H.-J. Yu, Spectrum analysis of some kinetic equations, Arch. Ration. Mech. Anal., 222 (2016), 731-768. doi: 10.1007/s00205-016-1010-2.

[23]

T. Yang and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560. doi: 10.1016/j.jde.2009.11.027.

[24]

T. Yang and H.-J. Yu, Global solutions to the relativistic Landau-Maxwell system in the whole space, J. Math. Pures Appl., 97 (2012), 602-634. doi: 10.1016/j.matpur.2011.09.006.

[25]

T. YangH.-J. Yu and H.-J. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 182 (2006), 415-470. doi: 10.1007/s00205-006-0009-5.

[26]

T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605. doi: 10.1007/s00220-006-0103-4.

show all references

References:
[1]

R.-J. Duan, Global smooth dynamics of a fully ionized plasma with long-range collisions, Ann. I. H. Poincaré, 31 (2014), 751-778. doi: 10.1016/j.anihpc.2013.07.004.

[2]

R.-J. Duan and R. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in $\mathbb{R}^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328. doi: 10.1007/s00205-010-0318-6.

[3]

R. S. Ellis and M. A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. pure et appl., 54 (1975), 125-156.

[4]

Y. Guo, The Vlasov-Poisson-Landau system in a periodic box, J. Amer. Math. Soc., 25 (2012), 759-812. doi: 10.1090/S0894-0347-2011-00722-4.

[5]

F. L. Hinton, Collisional transport in plasma. In Handbook of Plasma Physics, Volume Ⅰ: Basic Plasma Physics Ⅰ Rosenbluth M. N. and Sagdeev R. Z. (eds. ), Amsterdam: North-Holland Publishing Company, 1983, pp. 147.

[6]

T. Kato, Perturbation Theory of Linear Operator Springer, New York, 1996.

[7]

Y. Lei and H. Zhao, Negative Sobolev Spaces and the Two-species Vlasov-Maxwell-Landau System in the Whole Space, J. Funct. Anal., 267 (2014), 3710-3757. doi: 10.1016/j.jfa.2014.09.011.

[8]

Y. LeiL. Xiong and H. Zhao, One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space, Kinet. Relat. Models, 7 (2014), 551-590. doi: 10.3934/krm.2014.7.551.

[9]

M. Lemou, Linearized quantum and relativistic Fokker-Planck-Landau equations, Math. Methods Appl. Sci., 23 (2000), 1093-1119. doi: 10.1002/1099-1476(200008)23:12<1093::AID-MMA153>3.0.CO;2-8.

[10]

H. -L. Li, T. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, preprint, arXiv: 1402.3633v1, [math. AP].

[11]

H.-L. LiT. Yang and M. Zhong, Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations, Indiana Univ. Math. J., 65 (2016), 665-725. doi: 10.1512/iumj.2016.65.5730.

[12]

H.-L. LiT. YangJ. Sun and M. Zhong, Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations (in Chinese), Sci Sin Math, 46 (2016), 981-1004.

[13]

S.-Q. Liu and H.-J. Zhao, Optimal large-time decay of the relativistic Landau-Maxwell system, J. Differential Equations, 256 (2014), 832-857. doi: 10.1016/j.jde.2013.10.004.

[14]

T.-P. LiuT. Yang and S.-H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178-192. doi: 10.1016/j.physd.2003.07.011.

[15]

L. Luo and H.-J. Yu, Spectrum analysis of the linearized relativistic Landau equation, J. Stat. Phys., 163 (2016), 914-935. doi: 10.1007/s10955-016-1501-4.

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[17]

R. M. Strain, The Vlasov-Poisson-Landau System in $\mathbb{R}^3_x$, Arch. Rational Mech. Anal., 210 (2013), 615-671. doi: 10.1007/s00205-013-0658-0.

[18]

R. M. Strain and Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Comm. Math. Phys., 251 (2004), 263-320. doi: 10.1007/s00220-004-1151-2.

[19]

R. M. Strain and Y. Guo, Almost exponential decay near Maxwellian, Comm. P.D.E., 31 (2006), 417-429. doi: 10.1080/03605300500361545.

[20]

S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation Lecture Notes Series-No. 8, Hong Kong: Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, 2006.

[21]

Y. Wang, Global solution and time decay of the Vlasov-Poisson-Landau system in $\mathbb{R}^3$, SIAM J. Math. Anal., 44 (2012), 3281-3323. doi: 10.1137/120879129.

[22]

T. Yang and H.-J. Yu, Spectrum analysis of some kinetic equations, Arch. Ration. Mech. Anal., 222 (2016), 731-768. doi: 10.1007/s00205-016-1010-2.

[23]

T. Yang and H.-J. Yu, Hypocoercivity of the relativistic Boltzmann and Landau equations in the whole space, J. Differential Equations, 248 (2010), 1518-1560. doi: 10.1016/j.jde.2009.11.027.

[24]

T. Yang and H.-J. Yu, Global solutions to the relativistic Landau-Maxwell system in the whole space, J. Math. Pures Appl., 97 (2012), 602-634. doi: 10.1016/j.matpur.2011.09.006.

[25]

T. YangH.-J. Yu and H.-J. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 182 (2006), 415-470. doi: 10.1007/s00205-006-0009-5.

[26]

T. Yang and H.-J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605. doi: 10.1007/s00220-006-0103-4.

[1]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic & Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369

[2]

Yuanjie Lei, Linjie Xiong, Huijiang Zhao. One-species Vlasov-Poisson-Landau system near Maxwellians in the whole space. Kinetic & Related Models, 2014, 7 (3) : 551-590. doi: 10.3934/krm.2014.7.551

[3]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic & Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[4]

Irene M. Gamba, Maria Pia Gualdani, Christof Sparber. A note on the time decay of solutions for the linearized Wigner-Poisson system. Kinetic & Related Models, 2009, 2 (1) : 181-189. doi: 10.3934/krm.2009.2.181

[5]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[6]

Xiuting Li. The energy conservation for weak solutions to the relativistic Nordström-Vlasov system. Evolution Equations & Control Theory, 2016, 5 (1) : 135-145. doi: 10.3934/eect.2016.5.135

[7]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[8]

Bopeng Rao. Optimal energy decay rate in a damped Rayleigh beam. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 721-734. doi: 10.3934/dcds.1998.4.721

[9]

Yemin Chen. Smoothness of classical solutions to the Vlasov-Maxwell-Landau system near Maxwellians. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 889-910. doi: 10.3934/dcds.2008.20.889

[10]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[11]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[12]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[13]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[14]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[15]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[16]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[17]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[18]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[19]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[20]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (12)
  • HTML views (71)
  • Cited by (0)

Other articles
by authors

[Back to Top]