December  2018, 11(6): 1377-1393. doi: 10.3934/krm.2018054

A general consistent BGK model for gas mixtures

1. 

Keldysh Applied Mathematics Institute, Russian Academy of Sciences, Miusskaya Sq. 4, RU-125047 Moscow, Russia

2. 

Dip. di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 53/A, I-43124 Parma, Italy

3. 

Keldysh Applied Mathematics Institute, Russian Academy of Sciences, Miusskaya Sq. 4, RU-125047 Moscow, Russia

* Corresponding author: G. Spiga

Received  September 2017 Revised  December 2017 Published  June 2018

We propose a kinetic model of BGK type for a gas mixture of an arbitrary number of species with arbitrary collision law. The model features the same structure of the corresponding Boltzmann equations and fulfils all consistency requirements concerning conservation laws, equilibria, and H-theorem. Comparison is made to existing BGK models for mixtures, and the achieved improvements are commented on. Finally, possible application to the case of Coulomb interaction is briefly discussed.

Citation: Alexander V. Bobylev, Marzia Bisi, Maria Groppi, Giampiero Spiga, Irina F. Potapenko. A general consistent BGK model for gas mixtures. Kinetic & Related Models, 2018, 11 (6) : 1377-1393. doi: 10.3934/krm.2018054
References:
[1]

P. AndriesK. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018. doi: 10.1023/A:1014033703134. Google Scholar

[2]

P. L. BhatnagarE. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524. Google Scholar

[3]

M. Bisi and M. J. Cáceres, A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297-325. doi: 10.4310/CMS.2016.v14.n2.a1. Google Scholar

[4]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327 (pp. 1–9). doi: 10.1103/PhysRevE.81.036327. Google Scholar

[5]

S. Brull, An ellipsoidal statistical model for gas mixtures, Commun. Math. Sci., 13 (2015), 1-13. doi: 10.4310/CMS.2015.v13.n1.a1. Google Scholar

[6]

S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Contin. Mech. Thermodyn., 20 (2009), 489-508. doi: 10.1007/s00161-009-0095-3. Google Scholar

[7]

S. BrullV. Pavan and J. Schneider, Derivation of a BGK model for mixtures, Europ. J. Mech. B/Fluids, 33 (2012), 74-86. doi: 10.1016/j.euromechflu.2011.12.003. Google Scholar

[8]

C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9. Google Scholar

[9]

V. GarzóA. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids, 1 (1989), 380-383. Google Scholar

[10]

E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids, 10 (1967), 1928-1940. Google Scholar

[11]

J. M. Greene, Improved Bhatnagar-Gross-Krook model for electron-ion collisions, Phys. Fluids, 16 (1973), 2022-2023. doi: 10.1063/1.1694254. Google Scholar

[12]

M. GroppiS. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. - Theory Exp., 2009 (2009), P10010. doi: 10.1088/1742-5468/2009/10/P10010. Google Scholar

[13]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284. doi: 10.1063/1.1808651. Google Scholar

[14]

E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102 (1956), 593-604. doi: 10.1103/PhysRev.102.593. Google Scholar

[15]

J. R. HaackC. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856. doi: 10.1007/s10955-017-1824-9. Google Scholar

[16]

J. R. Haack, C. D. Hauck and M. S. Murillo, Interfacial mixing in high energy-density matter with a multiphysics kinetic model, Phys. Rev. E, 96 (2017), 063310 (pp. 1–14).Google Scholar

[17]

B. B. Hamel, Kinetic model for binary gas mixtures, Phys. Fluids, 8 (1965), 418-425. doi: 10.1063/1.1761239. Google Scholar

[18]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465. doi: 10.3934/krm.2017017. Google Scholar

[19]

M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969. doi: 10.1007/978-1-4899-6381-9. Google Scholar

[20]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. Fluids, 18 (2006), 037104, 15pp. doi: 10.1063/1.2185691. Google Scholar

[21]

L. D. Landau, Kinetic equation for the Coulomb interaction, Phys. Z. Sowjetunion, 10 (1936), 154-164. Google Scholar

[22]

L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford, 1969. Google Scholar

[23]

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Butterworth–Heinemann, 1981.Google Scholar

[24]

T. F. Morse, Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013. doi: 10.1063/1.1711112. Google Scholar

[25]

L. Sirovich, Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918. doi: 10.1063/1.1706706. Google Scholar

[26]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533. Google Scholar

show all references

References:
[1]

P. AndriesK. Aoki and B. Perthame, A consistent BGK-type model for gas mixtures, J. Stat. Phys., 106 (2002), 993-1018. doi: 10.1023/A:1014033703134. Google Scholar

[2]

P. L. BhatnagarE. P. Gross and K. Krook, A model for collision processes in gases, Phys. Rev., 94 (1954), 511-524. Google Scholar

[3]

M. Bisi and M. J. Cáceres, A BGK relaxation model for polyatomic gas mixtures, Commun. Math. Sci., 14 (2016), 297-325. doi: 10.4310/CMS.2016.v14.n2.a1. Google Scholar

[4]

M. Bisi, M. Groppi and G. Spiga, Kinetic Bhatnagar–Gross–Krook model for fast reactive mixtures and its hydrodynamic limit, Phys. Rev. E, 81 (2010), 036327 (pp. 1–9). doi: 10.1103/PhysRevE.81.036327. Google Scholar

[5]

S. Brull, An ellipsoidal statistical model for gas mixtures, Commun. Math. Sci., 13 (2015), 1-13. doi: 10.4310/CMS.2015.v13.n1.a1. Google Scholar

[6]

S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Contin. Mech. Thermodyn., 20 (2009), 489-508. doi: 10.1007/s00161-009-0095-3. Google Scholar

[7]

S. BrullV. Pavan and J. Schneider, Derivation of a BGK model for mixtures, Europ. J. Mech. B/Fluids, 33 (2012), 74-86. doi: 10.1016/j.euromechflu.2011.12.003. Google Scholar

[8]

C. Cercignani, The Boltzmann Equation and its Applications, Springer, New York, 1988. doi: 10.1007/978-1-4612-1039-9. Google Scholar

[9]

V. GarzóA. Santos and J. J. Brey, A kinetic model for a multicomponent gas, Phys. Fluids, 1 (1989), 380-383. Google Scholar

[10]

E. Goldman and L. Sirovich, Equations for gas mixtures, Phys. Fluids, 10 (1967), 1928-1940. Google Scholar

[11]

J. M. Greene, Improved Bhatnagar-Gross-Krook model for electron-ion collisions, Phys. Fluids, 16 (1973), 2022-2023. doi: 10.1063/1.1694254. Google Scholar

[12]

M. GroppiS. Rjasanow and G. Spiga, A kinetic relaxation approach to fast reactive mixtures: Shock wave structure, J. Stat. Mech. - Theory Exp., 2009 (2009), P10010. doi: 10.1088/1742-5468/2009/10/P10010. Google Scholar

[13]

M. Groppi and G. Spiga, A Bhatnagar-Gross-Krook-type approach for chemically reacting gas mixtures, Phys. Fluids, 16 (2004), 4273-4284. doi: 10.1063/1.1808651. Google Scholar

[14]

E. P. Gross and M. Krook, Model for collision processes in gases: Small-amplitude oscillations of charged two-component systems, Phys. Rev., 102 (1956), 593-604. doi: 10.1103/PhysRev.102.593. Google Scholar

[15]

J. R. HaackC. D. Hauck and M. S. Murillo, A conservative, entropic multispecies BGK model, J. Stat. Phys., 168 (2017), 826-856. doi: 10.1007/s10955-017-1824-9. Google Scholar

[16]

J. R. Haack, C. D. Hauck and M. S. Murillo, Interfacial mixing in high energy-density matter with a multiphysics kinetic model, Phys. Rev. E, 96 (2017), 063310 (pp. 1–14).Google Scholar

[17]

B. B. Hamel, Kinetic model for binary gas mixtures, Phys. Fluids, 8 (1965), 418-425. doi: 10.1063/1.1761239. Google Scholar

[18]

C. KlingenbergM. Pirner and G. Puppo, A consistent kinetic model for a two-component mixture with an application to plasma, Kinet. Relat. Models, 10 (2017), 445-465. doi: 10.3934/krm.2017017. Google Scholar

[19]

M. N. Kogan, Rarefied Gas Dynamics, Plenum Press, New York, 1969. doi: 10.1007/978-1-4899-6381-9. Google Scholar

[20]

G. M. Kremer, M. Pandolfi Bianchi and A. J. Soares, A relaxation kinetic model for transport phenomena in a reactive flow, Phys. Fluids, 18 (2006), 037104, 15pp. doi: 10.1063/1.2185691. Google Scholar

[21]

L. D. Landau, Kinetic equation for the Coulomb interaction, Phys. Z. Sowjetunion, 10 (1936), 154-164. Google Scholar

[22]

L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, Oxford, 1969. Google Scholar

[23]

E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Butterworth–Heinemann, 1981.Google Scholar

[24]

T. F. Morse, Kinetic model equations for a gas mixture, Phys. Fluids, 7 (1964), 2012-2013. doi: 10.1063/1.1711112. Google Scholar

[25]

L. Sirovich, Kinetic modeling of gas mixtures, Phys. Fluids, 5 (1962), 908-918. doi: 10.1063/1.1706706. Google Scholar

[26]

P. Welander, On the temperature jump in a rarefied gas, Ark. Fys., 7 (1954), 507-533. Google Scholar

[1]

Etienne Bernard, Laurent Desvillettes, Franç cois Golse, Valeria Ricci. A derivation of the Vlasov-Stokes system for aerosol flows from the kinetic theory of binary gas mixtures. Kinetic & Related Models, 2018, 11 (1) : 43-69. doi: 10.3934/krm.2018003

[2]

Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic & Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255

[3]

Niclas Bernhoff. Boundary layers and shock profiles for the discrete Boltzmann equation for mixtures. Kinetic & Related Models, 2012, 5 (1) : 1-19. doi: 10.3934/krm.2012.5.1

[4]

Yuanchang Sun, Lisa M. Wingen, Barbara J. Finlayson-Pitts, Jack Xin. A semi-blind source separation method for differential optical absorption spectroscopy of atmospheric gas mixtures. Inverse Problems & Imaging, 2014, 8 (2) : 587-610. doi: 10.3934/ipi.2014.8.587

[5]

Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037

[6]

Laurent Boudin, Bérénice Grec, Milana Pavić, Francesco Salvarani. Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic & Related Models, 2013, 6 (1) : 137-157. doi: 10.3934/krm.2013.6.137

[7]

Marzia Bisi, Tommaso Ruggeri, Giampiero Spiga. Dynamical pressure in a polyatomic gas: Interplay between kinetic theory and extended thermodynamics. Kinetic & Related Models, 2018, 11 (1) : 71-95. doi: 10.3934/krm.2018004

[8]

Stéphane Brull, Pierre Charrier, Luc Mieussens. Gas-surface interaction and boundary conditions for the Boltzmann equation. Kinetic & Related Models, 2014, 7 (2) : 219-251. doi: 10.3934/krm.2014.7.219

[9]

Raffaele Esposito, Mario Pulvirenti. Rigorous validity of the Boltzmann equation for a thin layer of a rarefied gas. Kinetic & Related Models, 2010, 3 (2) : 281-297. doi: 10.3934/krm.2010.3.281

[10]

Karsten Matthies, George Stone, Florian Theil. The derivation of the linear Boltzmann equation from a Rayleigh gas particle model. Kinetic & Related Models, 2018, 11 (1) : 137-177. doi: 10.3934/krm.2018008

[11]

Manuel Torrilhon. H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory. Kinetic & Related Models, 2012, 5 (1) : 185-201. doi: 10.3934/krm.2012.5.185

[12]

Karsten Matthies, George Stone. Derivation of a non-autonomous linear Boltzmann equation from a heterogeneous Rayleigh gas. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3299-3355. doi: 10.3934/dcds.2018143

[13]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic & Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[14]

Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012

[15]

Giovanni Russo, Francis Filbet. Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinetic & Related Models, 2009, 2 (1) : 231-250. doi: 10.3934/krm.2009.2.231

[16]

Masashi Ohnawa. Convergence rates towards the traveling waves for a model system of radiating gas with discontinuities. Kinetic & Related Models, 2012, 5 (4) : 857-872. doi: 10.3934/krm.2012.5.857

[17]

Irena Pawłow, Wojciech M. Zajączkowski. A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1823-1847. doi: 10.3934/cpaa.2011.10.1823

[18]

Liviu I. Ignat, Ademir F. Pazoto. Large time behaviour for a nonlocal diffusion - convection equation related with gas dynamics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3575-3589. doi: 10.3934/dcds.2014.34.3575

[19]

Thibaut Allemand. Derivation of a two-fluids model for a Bose gas from a quantum kinetic system. Kinetic & Related Models, 2009, 2 (2) : 379-402. doi: 10.3934/krm.2009.2.379

[20]

Mapundi K. Banda, Michael Herty, Axel Klar. Gas flow in pipeline networks. Networks & Heterogeneous Media, 2006, 1 (1) : 41-56. doi: 10.3934/nhm.2006.1.41

2018 Impact Factor: 1.38

Metrics

  • PDF downloads (73)
  • HTML views (109)
  • Cited by (0)

[Back to Top]