# American Institute of Mathematical Sciences

June  2019, 12(3): 483-505. doi: 10.3934/krm.2019020

## A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff

 Sorbonne Université, CNRS, LPSM, UMR 8001, F-75005 Paris, France

Received  March 2017 Revised  February 2018 Published  February 2019

We consider the spatially homogeneous Boltzmann equation for hard potentials with angular cutoff. This equation has a unique conservative weak solution $(f_t)_{t\geq 0}$, once the initial condition $f_0$ with finite mass and energy is fixed. Taking advantage of the energy conservation, we propose a recursive algorithm that produces a $(0,\infty)\times {\mathbb{R}}^3$ random variable $(M_t,V_t)$ such that $\mathbb{E}[M_t {\bf 1}_{\{V_t \in \cdot\}}] = f_t$. We also write down a series expansion of $f_t$. Although both the algorithm and the series expansion might be theoretically interesting in that they explicitly express $f_t$ in terms of $f_0$, we believe that the algorithm is not very efficient in practice and that the series expansion is rather intractable. This is a tedious extension to non-Maxwellian molecules of Wild's sum [18] and of its interpretation by McKean [10,11].

Citation: Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic & Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020
##### References:

show all references

##### References:
 [1] José A. Cañizo, Chuqi Cao, Josephine Evans, Havva Yoldaş. Hypocoercivity of linear kinetic equations via Harris's Theorem. Kinetic & Related Models, 2020, 13 (1) : 97-128. doi: 10.3934/krm.2020004 [2] Nicolas Vauchelet. Numerical simulation of a kinetic model for chemotaxis. Kinetic & Related Models, 2010, 3 (3) : 501-528. doi: 10.3934/krm.2010.3.501 [3] Sébastien Guisset. Angular moments models for rarefied gas dynamics. Numerical comparisons with kinetic and Navier-Stokes equations. Kinetic & Related Models, 2020, 13 (4) : 739-758. doi: 10.3934/krm.2020025 [4] Niklas Hartung. Efficient resolution of metastatic tumor growth models by reformulation into integral equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 445-467. doi: 10.3934/dcdsb.2015.20.445 [5] Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363 [6] Daniel Guo, John Drake. A global semi-Lagrangian spectral model of shallow water equations with time-dependent variable resolution. Conference Publications, 2005, 2005 (Special) : 355-364. doi: 10.3934/proc.2005.2005.355 [7] Giacomo Albi, Lorenzo Pareschi, Mattia Zanella. Opinion dynamics over complex networks: Kinetic modelling and numerical methods. Kinetic & Related Models, 2017, 10 (1) : 1-32. doi: 10.3934/krm.2017001 [8] Hélène Hivert. Numerical schemes for kinetic equation with diffusion limit and anomalous time scale. Kinetic & Related Models, 2018, 11 (2) : 409-439. doi: 10.3934/krm.2018019 [9] Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic & Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253 [10] Krystyna Kuperberg. 2-wild trajectories. Conference Publications, 2005, 2005 (Special) : 518-523. doi: 10.3934/proc.2005.2005.518 [11] Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic & Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109 [12] Luisa Fermo, Andrea Tosin. Fundamental diagrams for kinetic equations of traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 449-462. doi: 10.3934/dcdss.2014.7.449 [13] Paweł Pilarczyk. Topological-numerical approach to the existence of periodic trajectories in ODE's. Conference Publications, 2003, 2003 (Special) : 701-708. doi: 10.3934/proc.2003.2003.701 [14] Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou. Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles. Kinetic & Related Models, 2012, 5 (4) : 787-816. doi: 10.3934/krm.2012.5.787 [15] Sigurdur Hafstein, Skuli Gudmundsson, Peter Giesl, Enrico Scalas. Lyapunov function computation for autonomous linear stochastic differential equations using sum-of-squares programming. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 939-956. doi: 10.3934/dcdsb.2018049 [16] Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009 [17] Niclas Bernhoff. Boundary layers for discrete kinetic models: Multicomponent mixtures, polyatomic molecules, bimolecular reactions, and quantum kinetic equations. Kinetic & Related Models, 2017, 10 (4) : 925-955. doi: 10.3934/krm.2017037 [18] N. Bellomo, A. Bellouquid. From a class of kinetic models to the macroscopic equations for multicellular systems in biology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 59-80. doi: 10.3934/dcdsb.2004.4.59 [19] Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255 [20] Jingwei Hu, Shi Jin. On kinetic flux vector splitting schemes for quantum Euler equations. Kinetic & Related Models, 2011, 4 (2) : 517-530. doi: 10.3934/krm.2011.4.517

2018 Impact Factor: 1.38