We investigate the time-asymptotic stability of planar rarefaction wave for the three-dimensional Boltzmann equation, based on the micro-macro decomposition introduced in [
Citation: |
[1] | R. A. Adams and J. J. Fournier, Sobolev Spaces, 2nd edition, Academic Press, 2003. |
[2] | J. Brezina, E. Chiodaroli and O. Kreml, On contact discontinuities in multi-dimensional isentropic Euler equations, Electronic Journal of Differential Equations, (2018), Paper No. 94, 11 pp. |
[3] | R. E. Caflisch and B. Nicolaenko, Shock profile solutions of the Boltzmann equation, Comm. Math. Phys., 86 (1982), 161-194. doi: 10.1007/BF01206009. |
[4] | S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd edition, Cambridge University Press, 1990. |
[5] | G. Q. Chen and J. Chen, Stability of rarefaction waves and vacuum states for the multidimensional Euler equations, J. Hyperbolic Differ. Equ., 4 (2007), 105-122. doi: 10.1142/S0219891607001070. |
[6] | E. Chiodaroli, C. DeLellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics, Comm. Pure Appl. Math., 68 (2015), 1157-1190. doi: 10.1002/cpa.21537. |
[7] | E. Chiodaroli and O. Kreml, Non-uniqueness of admissible weak solutions to the Riemann problem for the isentropic Euler equations, Nonlinearity, 31 (2018), 1441-1460. doi: 10.1088/1361-6544/aaa10d. |
[8] | C. DeLellis and L. Székelyhidi Jr., The Euler equations as a differential inclusion, Ann. of Math.(2), 170 (2009), 1417–1436. doi: 10.4007/annals.2009.170.1417. |
[9] | E. Feireisl and O. Kreml, Uniqueness of rarefaction waves in multidimensional compressible Euler system, J. Hyperbolic Differ. Equ., 12 (2015), 489-499. doi: 10.1142/S0219891615500149. |
[10] | E. Feireisl, O. Kreml and A. Vasseur, Stability of the isentropic Riemann solutions of the full multidimensional Euler system, SIAM J. Math. Anal., 47 (2015), 2416-2425. doi: 10.1137/140999827. |
[11] | H. Grad, Asymptotic theory of the boltzmann equation Ⅱ, in Rarefied Gas Dynamics (J. A. Laurmann, ed.), Academic Press, New York, 1 (1963), 26–59. |
[12] | F. M. Huang, Y. Wang and T. Yang, Hydrodynamic limit of the Boltzmann equation with contact discontinuities, Comm. Math. Phy., 295 (2010), 293-326. doi: 10.1007/s00220-009-0966-2. |
[13] | F. M. Huang, Y. Wang and T. Yang, Fluid dynamic limit to the Riemann solutions of Euler equations: Ⅰ. Superposition of rarefaction waves and contact discontinuity, Kinet. Relat. Models, 3 (2010), 685-728. doi: 10.3934/krm.2010.3.685. |
[14] | F. M. Huang, Y. Wang and T. Yang, Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to Riemann problem, Arch. Rational Mech. Anal., 203 (2012), 379-413. doi: 10.1007/s00205-011-0450-y. |
[15] | F. M. Huang, Y. Wang, Y. Wang and T. Yang, The limit of the Boltzmann equation to the Euler equations for Riemann problems, SIAM J. Math. Anal., 45 (2013), 1741-1811. doi: 10.1137/120898541. |
[16] | F. M. Huang, Z. P. Xin and T. Yang, Contact discontinuities with general perturbation for gas motion, Adv. Math., 219 (2008), 1246-1297. doi: 10.1016/j.aim.2008.06.014. |
[17] | F. M. Huang and T. Yang, Stability of contact discontinuity for the Boltzmann equation, J. Differ. Equations, 229 (2006), 698-742. doi: 10.1016/j.jde.2005.12.004. |
[18] | C. Klingenberg and S. Markfelder, The Riemann problem for the multi- dimensional isentropic system of gas dynamics is ill-posed if it contains a shock, Arch Rational Mech Anal., 227 (2018), 967-994. doi: 10.1007/s00205-017-1179-z. |
[19] | P. D. Lax, Hyperbolic systems of conservation laws, Ⅱ., Comm. Pure Appl. Math., 10 (1957), 537-566. doi: 10.1002/cpa.3160100406. |
[20] | L. A. Li, T. Wang and Y. Wang, Stability of planar rarefaction wave to 3D full compressible Navier-Stokes equations, Arch. Rational Mech. Anal., 230 (2018), 911-937. doi: 10.1007/s00205-018-1260-2. |
[21] | L. A. Li and Y. Wang, Stability of the planar rarefaction wave to the two-dimensional compressible Navier-Stokes equations, SIAM J. Math. Anal., 50 (2018), 4937-4963. doi: 10.1137/18M1171059. |
[22] | T. P. Liu, T. Yang and S. H. Yu, Energy method for the Boltzmann equation, Physica D, 188 (2004), 178-192. doi: 10.1016/j.physd.2003.07.011. |
[23] | T. P. Liu, T. Yang, S. H. Yu and H. J. Zhao, Nonlinear stability of rarefaction waves for the Boltzmann equation, Arch. Rational Mech. Anal., 181 (2006), 333-371. doi: 10.1007/s00205-005-0414-1. |
[24] | T. P. Liu and S. H. Yu, Boltzmann equation: Micro-macro decompositions and positivity of shock profiles, Commun. Math. Phys., 246 (2004), 133-179. doi: 10.1007/s00220-003-1030-2. |
[25] | T. P. Liu and S. H. Yu, Invariant manifolds for steady Boltzmann flows and applications, Arch. Rational Mech. Anal., 209 (2013), 869-997. doi: 10.1007/s00205-013-0640-x. |
[26] | A. Matsumura and K. Nishihara, Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas, Japan J. Appl. Math., 3 (1986), 1-13. doi: 10.1007/BF03167088. |
[27] | A. Matsumura and K. Nishihara, Global stability of the rarefaction wave of a one-dimensional model system for compressible viscous gas, Comm. Math. Phys., 144 (1992), 325-335. doi: 10.1007/BF02101095. |
[28] | J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2$^{nd}$ edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0. |
[29] | T. Wang and Y. Wang, Stability of superposition of two viscous shock waves for the Boltzmann equation, SIAM J. Math. Anal., 47 (2015), 1070-1120. doi: 10.1137/140963005. |
[30] | Z. P. Xin, Asymptotic stability of planar rarefaction waves for viscous conservation laws in several dimensions, Trans. Amer. Math. Soc., 319 (1990), 805-820. doi: 10.1090/S0002-9947-1990-0970270-8. |
[31] | Z. P. Xin and H. H. Zeng, Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations, J. Differential Equations, 249 (2010), 827-871. doi: 10.1016/j.jde.2010.03.011. |
[32] | S. H. Yu, Hydrodynamic limits with shock waves of the Boltzmann equations, Commun. Pure Appl. Math, 58 (2005), 409-443. doi: 10.1002/cpa.20027. |
[33] | S. H. Yu, Nonlinear wave propagations over a Boltzmann shock profile, J. Amer. Math. Soc., 23 (2010), 1041-1118. doi: 10.1090/S0894-0347-2010-00671-6. |