2004, 1(2): 361-404. doi: 10.3934/mbe.2004.1.361

Dynamical Models of Tuberculosis and Their Applications


Mathematics, Computational and Modeling Sciences Center, Arizona State University, PO Box 871904, Tempe, AZ 85287, United States


Department of Mathematical Sciences, Montclair State University, Upper Montclair, NJ 07043, United States

Published  July 2004

The reemergence of tuberculosis (TB) from the 1980s to the early 1990s instigated extensive researches on the mechanisms behind the transmission dynamics of TB epidemics. This article provides a detailed review of the work on the dynamics and control of TB. The earliest mathematical models describing the TB dynamics appeared in the 1960s and focused on the prediction and control strategies using simulation approaches. Most recently developed models not only pay attention to simulations but also take care of dynamical analysis using modern knowledge of dynamical systems. Questions addressed by these models mainly concentrate on TB control strategies, optimal vaccination policies, approaches toward the elimination of TB in the U.S.A., TB co-infection with HIV/AIDS, drug-resistant TB, responses of the immune system, impacts of demography, the role of public transportation systems, and the impact of contact patterns. Model formulations involve a variety of mathematical areas, such as ODEs (Ordinary Differential Equations) (both autonomous and non-autonomous systems), PDEs (Partial Differential Equations), system of difference equations, system of integro-differential equations, Markov chain model, and simulation models.
Citation: Carlos Castillo-Chavez, Baojun Song. Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences & Engineering, 2004, 1 (2) : 361-404. doi: 10.3934/mbe.2004.1.361

Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369


Cristiana J. Silva, Delfim F. M. Torres. Modeling and optimal control of HIV/AIDS prevention through PrEP. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 119-141. doi: 10.3934/dcdss.2018008


Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217


Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 1009-1022. doi: 10.3934/dcdsb.2016.21.1009


Stephen Pankavich, Nathan Neri, Deborah Shutt. Bistable dynamics and Hopf bifurcation in a refined model of early stage HIV infection. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020044


David J. Gerberry. An exact approach to calibrating infectious disease models to surveillance data: The case of HIV and HSV-2. Mathematical Biosciences & Engineering, 2018, 15 (1) : 153-179. doi: 10.3934/mbe.2018007


Michael Blank. Emergence of collective behavior in dynamical networks. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 313-329. doi: 10.3934/dcdsb.2013.18.313


Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053


Ariel D. Weinberger, Alan S. Perelson. Persistence and emergence of X4 virus in HIV infection. Mathematical Biosciences & Engineering, 2011, 8 (2) : 605-626. doi: 10.3934/mbe.2011.8.605


Kbenesh Blayneh, Yanzhao Cao, Hee-Dae Kwon. Optimal control of vector-borne diseases: Treatment and prevention. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 587-611. doi: 10.3934/dcdsb.2009.11.587


Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111


Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313


Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021


Georgi Kapitanov. A double age-structured model of the co-infection of tuberculosis and HIV. Mathematical Biosciences & Engineering, 2015, 12 (1) : 23-40. doi: 10.3934/mbe.2015.12.23


Aditya S. Khanna, Dobromir T. Dimitrov, Steven M. Goodreau. What can mathematical models tell us about the relationship between circular migrations and HIV transmission dynamics?. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1065-1090. doi: 10.3934/mbe.2014.11.1065


Roberto A. Saenz, Herbert W. Hethcote. Competing species models with an infectious disease. Mathematical Biosciences & Engineering, 2006, 3 (1) : 219-235. doi: 10.3934/mbe.2006.3.219


Burcu Adivar, Ebru Selin Selen. Compartmental disease transmission models for smallpox. Conference Publications, 2011, 2011 (Special) : 13-21. doi: 10.3934/proc.2011.2011.13


Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011


Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186


Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483

2018 Impact Factor: 1.313


  • PDF downloads (484)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]