
Previous Article
Modeling the potential impact of rectal microbicides to reduce HIV transmission in bathhouses
 MBE Home
 This Issue

Next Article
An sveir model for assessing potential impact of an imperfect antiSARS vaccine
The influence of infectious diseases on population genetics
1.  Department of Mathematics, Purdue University, West Lafayette, IN 47907 
2.  Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287 
[1] 
Hongbin Guo, Michael Yi Li. Global dynamics of a staged progression model for infectious diseases. Mathematical Biosciences & Engineering, 2006, 3 (3) : 513525. doi: 10.3934/mbe.2006.3.513 
[2] 
Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou. Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences & Engineering, 2016, 13 (4) : 813840. doi: 10.3934/mbe.2016019 
[3] 
Darja Kalajdzievska, Michael Yi Li. Modeling the effects of carriers on transmission dynamics of infectious diseases. Mathematical Biosciences & Engineering, 2011, 8 (3) : 711722. doi: 10.3934/mbe.2011.8.711 
[4] 
M. H. A. Biswas, L. T. Paiva, MdR de Pinho. A SEIR model for control of infectious diseases with constraints. Mathematical Biosciences & Engineering, 2014, 11 (4) : 761784. doi: 10.3934/mbe.2014.11.761 
[5] 
Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced nonsmooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445461. doi: 10.3934/mbe.2013.10.445 
[6] 
Alexandre Caboussat, Allison Leonard. Numerical solution and fastslow decomposition of a population of weakly coupled systems. Conference Publications, 2009, 2009 (Special) : 123132. doi: 10.3934/proc.2009.2009.123 
[7] 
Markus Thäter, Kurt Chudej, Hans Josef Pesch. Optimal vaccination strategies for an SEIR model of infectious diseases with logistic growth. Mathematical Biosciences & Engineering, 2018, 15 (2) : 485505. doi: 10.3934/mbe.2018022 
[8] 
Sara Y. Del Valle, J. M. Hyman, Nakul Chitnis. Mathematical models of contact patterns between age groups for predicting the spread of infectious diseases. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14751497. doi: 10.3934/mbe.2013.10.1475 
[9] 
Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slowfast dynamics. Discrete & Continuous Dynamical Systems  B, 2018, 23 (7) : 29352950. doi: 10.3934/dcdsb.2018112 
[10] 
Chunhua Jin. Boundedness and global solvability to a chemotaxishaptotaxis model with slow and fast diffusion. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 16751688. doi: 10.3934/dcdsb.2018069 
[11] 
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19091927. doi: 10.3934/dcdsb.2013.18.1909 
[12] 
Reinhard Bürger. A survey of migrationselection models in population genetics. Discrete & Continuous Dynamical Systems  B, 2014, 19 (4) : 883959. doi: 10.3934/dcdsb.2014.19.883 
[13] 
Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete & Continuous Dynamical Systems  A, 2014, 34 (2) : 821841. doi: 10.3934/dcds.2014.34.821 
[14] 
Andrea Giorgini. On the SwiftHohenberg equation with slow and fast dynamics: wellposedness and longtime behavior. Communications on Pure & Applied Analysis, 2016, 15 (1) : 219241. doi: 10.3934/cpaa.2016.15.219 
[15] 
Wei Feng, Xin Lu, Richard John Donovan Jr.. Population dynamics in a model for territory acquisition. Conference Publications, 2001, 2001 (Special) : 156165. doi: 10.3934/proc.2001.2001.156 
[16] 
Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 11731187. doi: 10.3934/mbe.2015.12.1173 
[17] 
C. Connell Mccluskey. Lyapunov functions for tuberculosis models with fast and slow progression. Mathematical Biosciences & Engineering, 2006, 3 (4) : 603614. doi: 10.3934/mbe.2006.3.603 
[18] 
Kimie Nakashima, WeiMing Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems  A, 2010, 27 (2) : 617641. doi: 10.3934/dcds.2010.27.617 
[19] 
Yuan Lou, WeiMing Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems  A, 2010, 27 (2) : 643655. doi: 10.3934/dcds.2010.27.643 
[20] 
Andreas Widder. On the usefulness of setmembership estimation in the epidemiology of infectious diseases. Mathematical Biosciences & Engineering, 2018, 15 (1) : 141152. doi: 10.3934/mbe.2018006 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]