
Previous Article
An optimal adaptive timestepping scheme for solving reactiondiffusionchemotaxis systems
 MBE Home
 This Issue

Next Article
Evolutionary dynamics of preypredator systems with Holling type II functional response
Modeling diseases with latency and relapse
1.  Department of Mathematics and Statistics, University of Victoria, Victoria B.C., Canada V8W 3P4 
2.  Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada, V8W 3P4, Canada 
3.  Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7, Canada 
[1] 
Ovide Arino, Manuel Delgado, Mónica MolinaBecerra. Asymptotic behavior of diseasefree equilibriums of an agestructured predatorprey model with disease in the prey. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 501515. doi: 10.3934/dcdsb.2004.4.501 
[2] 
Yali Yang, Sanyi Tang, Xiaohong Ren, Huiwen Zhao, Chenping Guo. Global stability and optimal control for a tuberculosis model with vaccination and treatment. Discrete & Continuous Dynamical Systems  B, 2016, 21 (3) : 10091022. doi: 10.3934/dcdsb.2016.21.1009 
[3] 
Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems  A, 2016, 36 (10) : 56575679. doi: 10.3934/dcds.2016048 
[4] 
Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727736. doi: 10.3934/proc.2011.2011.727 
[5] 
Marc Briant. Stability of global equilibrium for the multispecies Boltzmann equation in $L^\infty$ settings. Discrete & Continuous Dynamical Systems  A, 2016, 36 (12) : 66696688. doi: 10.3934/dcds.2016090 
[6] 
Shanjing Ren. Global stability in a tuberculosis model of imperfect treatment with agedependent latency and relapse. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 13371360. doi: 10.3934/mbe.2017069 
[7] 
BaoZhu Guo, LiMing Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689694. doi: 10.3934/mbe.2011.8.689 
[8] 
Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 13951403. doi: 10.3934/proc.2011.2011.1395 
[9] 
Antoine Perasso. Global stability and uniform persistence for an infection loadstructured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1532. doi: 10.3934/cpaa.2019002 
[10] 
Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reactionconvectiondiffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559579. doi: 10.3934/mbe.2017033 
[11] 
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2006, 5 (3) : 515528. doi: 10.3934/cpaa.2006.5.515 
[12] 
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure & Applied Analysis, 2007, 6 (1) : 6982. doi: 10.3934/cpaa.2007.6.69 
[13] 
Juan Pablo Aparicio, Carlos CastilloChávez. Mathematical modelling of tuberculosis epidemics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 209237. doi: 10.3934/mbe.2009.6.209 
[14] 
Carlos CastilloChavez, Baojun Song. Dynamical Models of Tuberculosis and Their Applications. Mathematical Biosciences & Engineering, 2004, 1 (2) : 361404. doi: 10.3934/mbe.2004.1.361 
[15] 
Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations & Control Theory, 2014, 3 (1) : 114. doi: 10.3934/eect.2014.3.1 
[16] 
Svetlana BunimovichMendrazitsky, Yakov Goltser. Use of quasinormal form to examine stability of tumorfree equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529547. doi: 10.3934/mbe.2011.8.529 
[17] 
Loïs Boullu, Mostafa Adimy, Fabien Crauste, Laurent PujoMenjouet. Oscillations and asymptotic convergence for a delay differential equation modeling platelet production. Discrete & Continuous Dynamical Systems  B, 2019, 24 (6) : 24172442. doi: 10.3934/dcdsb.2018259 
[18] 
Fengjuan Meng, Chengkui Zhong. Multiple equilibrium points in global attractor for the weakly damped wave equation with critical exponent. Discrete & Continuous Dynamical Systems  B, 2014, 19 (1) : 217230. doi: 10.3934/dcdsb.2014.19.217 
[19] 
Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete & Continuous Dynamical Systems  S, 2013, 6 (2) : 461478. doi: 10.3934/dcdss.2013.6.461 
[20] 
Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111122. doi: 10.3934/mbe.2012.9.111 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]