2007, 4(3): 553-563. doi: 10.3934/mbe.2007.4.553

Resistance mechanisms matter in SIR models

1. 

Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States

2. 

Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, United States

Received  January 2007 Revised  April 2007 Published  May 2007

We compare four SIR-style models describing behavioral or immunological disease resistance that may be both partial and temporary in parameter regions feasible for interpandemic influenza. For the models studied, backward bifurcations and bistability may occur in contexts where resistance is due to behavior change, but they do not occur when resistance originates from an immune response. Care must be exercised to ensure that modeling assumptions about resistance are consistent with the biological mechanisms under study.
Citation: Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553
[1]

Urszula Ledzewicz, Heinz Schättler. Drug resistance in cancer chemotherapy as an optimal control problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 129-150. doi: 10.3934/dcdsb.2006.6.129

[2]

Sebastian Bonhoeffer, Pia Abel zur Wiesch, Roger D. Kouyos. Rotating antibiotics does not minimize selection for resistance. Mathematical Biosciences & Engineering, 2010, 7 (4) : 919-922. doi: 10.3934/mbe.2010.7.919

[3]

Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905-918. doi: 10.3934/mbe.2010.7.905

[4]

Donato Patrizia, Andrey Piatnitski. On the effective interfacial resistance through rough surfaces. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1295-1310. doi: 10.3934/cpaa.2010.9.1295

[5]

Avner Friedman, Najat Ziyadi, Khalid Boushaba. A model of drug resistance with infection by health care workers. Mathematical Biosciences & Engineering, 2010, 7 (4) : 779-792. doi: 10.3934/mbe.2010.7.779

[6]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083

[7]

Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug. Mathematical Biosciences & Engineering, 2005, 2 (2) : 227-238. doi: 10.3934/mbe.2005.2.227

[8]

Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers. A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences & Engineering, 2009, 6 (3) : 649-661. doi: 10.3934/mbe.2009.6.649

[9]

Robert E. Beardmore, Rafael Peña-Miller. Rotating antibiotics selects optimally against antibiotic resistance, in theory. Mathematical Biosciences & Engineering, 2010, 7 (3) : 527-552. doi: 10.3934/mbe.2010.7.527

[10]

Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier. On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences & Engineering, 2017, 14 (1) : 217-235. doi: 10.3934/mbe.2017014

[11]

Ami B. Shah, Katarzyna A. Rejniak, Jana L. Gevertz. Limiting the development of anti-cancer drug resistance in a spatial model of micrometastases. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1185-1206. doi: 10.3934/mbe.2016038

[12]

Zhenzhen Chen, Sze-Bi Hsu, Ya-Tang Yang. The continuous morbidostat: A chemostat with controlled drug application to select for drug resistance mutants. Communications on Pure & Applied Analysis, 2020, 19 (1) : 203-220. doi: 10.3934/cpaa.2020011

[13]

Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Corrigendum to "Singularity of controls in a simple model of acquired chemotherapy resistance". Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 2021-2021. doi: 10.3934/dcdsb.2020105

[14]

Daniel J. Kelleher, Hugo Panzo, Antoni Brzoska, Alexander Teplyaev. Dual graphs and modified Barlow-Bass resistance estimates for repeated barycentric subdivisions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 27-42. doi: 10.3934/dcdss.2019002

[15]

Arturo Alvarez-Arenas, Konstantin E. Starkov, Gabriel F. Calvo, Juan Belmonte-Beitia. Ultimate dynamics and optimal control of a multi-compartment model of tumor resistance to chemotherapy. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2017-2038. doi: 10.3934/dcdsb.2019082

[16]

Stamatios Katsikas, Vassilli Kolokoltsov. Evolutionary, mean-field and pressure-resistance game modelling of networks security. Journal of Dynamics & Games, 2019, 6 (4) : 315-335. doi: 10.3934/jdg.2019021

[17]

Nishant Sinha. Internal state recovery of Espresso stream cipher using conditional sampling resistance and TMDTO attack. Advances in Mathematics of Communications, 2019, 0 (0) : 0-0. doi: 10.3934/amc.2020081

[18]

Jian Zu, Miaolei Li, Yuexi Gu, Shuting Fu. Modelling the evolutionary dynamics of host resistance-related traits in a susceptible-infected community with density-dependent mortality. Discrete & Continuous Dynamical Systems - B, 2020, 25 (8) : 3049-3086. doi: 10.3934/dcdsb.2020051

[19]

Andrew Yates, Robin Callard. Cell death and the maintenance of immunological memory. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 43-59. doi: 10.3934/dcdsb.2001.1.43

[20]

Suqi Ma. Low viral persistence of an immunological model. Mathematical Biosciences & Engineering, 2012, 9 (4) : 809-817. doi: 10.3934/mbe.2012.9.809

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]