• Previous Article
    Control entropy: A complexity measure for nonstationary signals
  • MBE Home
  • This Issue
  • Next Article
    Systemically modeling the dynamics of plasma insulin in subcutaneous injection of insulin analogues for type 1 diabetes
2009, 6(1): 27-40. doi: 10.3934/mbe.2009.6.27

A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function

1. 

Department of Biomedical Engineering, Eindhoven University of Technology, University Hospital Maastricht, PO Box 5800, Maastricht, Netherlands, Netherlands

2. 

Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, Eindhoven, Netherlands

Received  May 2008 Revised  September 2008 Published  December 2008

Previously, by assuming a viscous dominated flow in the boundary layer and an inertia dominated flow in the vessel core, a velocity profile function for a 1D-wave propagation model was derived. Because the time dependent shape of the velocity profile in this boundary layer model depends on the size of the inviscid core and the boundary layer, and thus on the Womersley number, it differs along the arterial tree. In this study we evaluated a lumped model for a vessel segment in which the element configuration is based on physical phenomena described by the boundary layer model and for which all parameters have a physically based quantitative value dependent on the Womersley number. The proposed electrical analog consists of a Womersley number dependent resistor and an inductor arranged in parallel, representing the flow impedance in respectively the vessel core and the boundary layer, in series with a second resistor. After incorporating a capacitor representing the vessel compliance in this rigid tube model, the element configuration resembles the configuration of the four-element windkessel model. For arbitrary Womersley numbers the relative impedance of Womersley theory is approximated with high accuracy. In the limits for small and large Womersley numbers the relative impedances of the proposed lumped model correspond exactly to Womersley theory.
Citation: Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27
[1]

Panagiotes A. Voltairas, Antonios Charalambopoulos, Dimitrios I. Fotiadis, Lambros K. Michalis. A quasi-lumped model for the peripheral distortion of the arterial pulse. Mathematical Biosciences & Engineering, 2012, 9 (1) : 175-198. doi: 10.3934/mbe.2012.9.175

[2]

Harry L. Johnson, David Russell. Transfer function approach to output specification in certain linear distributed parameter systems. Conference Publications, 2003, 2003 (Special) : 449-458. doi: 10.3934/proc.2003.2003.449

[3]

H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Carola Kruse, Simon Shaw, John Whiteman, Mark P. Brewin, Stephen E. Greenwald, Malcolm J. Birch. Model validation for a noninvasive arterial stenosis detection problem. Mathematical Biosciences & Engineering, 2014, 11 (3) : 427-448. doi: 10.3934/mbe.2014.11.427

[4]

Victor Fabian Morales-Delgado, José Francisco Gómez-Aguilar, Marco Antonio Taneco-Hernández. Mathematical modeling approach to the fractional Bergman's model. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 805-821. doi: 10.3934/dcdss.2020046

[5]

Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen. Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 93-115. doi: 10.3934/mbe.2009.6.93

[6]

Guangyu Sui, Meng Fan, Irakli Loladze, Yang Kuang. The dynamics of a stoichiometric plant-herbivore model and its discrete analog. Mathematical Biosciences & Engineering, 2007, 4 (1) : 29-46. doi: 10.3934/mbe.2007.4.29

[7]

Valentin R. Koch, Yves Lucet. A note on: Spline technique for modeling roadway profile to minimize earthwork cost. Journal of Industrial & Management Optimization, 2010, 6 (2) : 393-400. doi: 10.3934/jimo.2010.6.393

[8]

Ahmad A. Moreb. Spline technique for modeling roadway profile to minimize earthwork cost. Journal of Industrial & Management Optimization, 2009, 5 (2) : 275-283. doi: 10.3934/jimo.2009.5.275

[9]

Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127

[10]

Hee-Dae Kwon, Jeehyun Lee, Myoungho Yoon. An age-structured model with immune response of HIV infection: Modeling and optimal control approach. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 153-172. doi: 10.3934/dcdsb.2014.19.153

[11]

Jan Poleszczuk, Marek Bodnar, Urszula Foryś. New approach to modeling of antiangiogenic treatment on the basis of Hahnfeldt et al. model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 591-603. doi: 10.3934/mbe.2011.8.591

[12]

Hans Weinberger. The approximate controllability of a model for mutant selection. Evolution Equations & Control Theory, 2013, 2 (4) : 741-747. doi: 10.3934/eect.2013.2.741

[13]

Takeshi Fukao, Nobuyuki Kenmochi. A thermohydraulics model with temperature dependent constraint on velocity fields. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 17-34. doi: 10.3934/dcdss.2014.7.17

[14]

Chengxia Lei, Yihong Du. Asymptotic profile of the solution to a free boundary problem arising in a shifting climate model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 895-911. doi: 10.3934/dcdsb.2017045

[15]

Azmy S. Ackleh, Jeremy J. Thibodeaux. Parameter estimation in a structured erythropoiesis model. Mathematical Biosciences & Engineering, 2008, 5 (4) : 601-616. doi: 10.3934/mbe.2008.5.601

[16]

Óscar Vega-Amaya, Joaquín López-Borbón. A perturbation approach to a class of discounted approximate value iteration algorithms with borel spaces. Journal of Dynamics & Games, 2016, 3 (3) : 261-278. doi: 10.3934/jdg.2016014

[17]

Arnaud Münch. A variational approach to approximate controls for system with essential spectrum: Application to membranal arch. Evolution Equations & Control Theory, 2013, 2 (1) : 119-151. doi: 10.3934/eect.2013.2.119

[18]

Pavel Krejčí, Giselle A. Monteiro. Inverse parameter-dependent Preisach operator in thermo-piezoelectricity modeling. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3051-3066. doi: 10.3934/dcdsb.2018299

[19]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems & Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[20]

Ali K. Unver, Christian Ringhofer, M. Emir Koksal. Parameter extraction of complex production systems via a kinetic approach. Kinetic & Related Models, 2016, 9 (2) : 407-427. doi: 10.3934/krm.2016.9.407

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

[Back to Top]