2010, 7(2): 347-361. doi: 10.3934/mbe.2010.7.347

Global stability for a class of discrete SIR epidemic models

1. 

Department of Pure and Applied Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan, Japan

2. 

Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Received  July 2009 Revised  February 2010 Published  April 2010

In this paper, we propose a class of discrete SIR epidemic models which are derived from SIR epidemic models with distributed delays by using a variation of the backward Euler method. Applying a Lyapunov functional technique, it is shown that the global dynamics of each discrete SIR epidemic model are fully determined by a single threshold parameter and the effect of discrete time delays are harmless for the global stability of the endemic equilibrium of the model.
Citation: Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347
[1]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[2]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[3]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[4]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61

[5]

Kai Wang, Zhidong Teng, Xueliang Zhang. Dynamical behaviors of an Echinococcosis epidemic model with distributed delays. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1425-1445. doi: 10.3934/mbe.2017074

[6]

Hermann Brunner, Chunhua Ou. On the asymptotic stability of Volterra functional equations with vanishing delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 397-406. doi: 10.3934/cpaa.2015.14.397

[7]

Fuke Wu, Xuerong Mao, Peter E. Kloeden. Discrete Razumikhin-type technique and stability of the Euler--Maruyama method to stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 885-903. doi: 10.3934/dcds.2013.33.885

[8]

Bin Fang, Xue-Zhi Li, Maia Martcheva, Li-Ming Cai. Global stability for a heroin model with two distributed delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 715-733. doi: 10.3934/dcdsb.2014.19.715

[9]

Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata. Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences & Engineering, 2018, 15 (3) : 653-666. doi: 10.3934/mbe.2018029

[10]

Wanbiao Ma, Yasuhiro Takeuchi. Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 671-678. doi: 10.3934/dcdsb.2004.4.671

[11]

Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867

[12]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[13]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[14]

Emad Attia, Marek Bodnar, Urszula Foryś. Angiogenesis model with Erlang distributed delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 1-15. doi: 10.3934/mbe.2017001

[15]

Shengqiang Liu, Lin Wang. Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy. Mathematical Biosciences & Engineering, 2010, 7 (3) : 675-685. doi: 10.3934/mbe.2010.7.675

[16]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[17]

Yan Li, Wan-Tong Li, Guo Lin. Traveling waves of a delayed diffusive SIR epidemic model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1001-1022. doi: 10.3934/cpaa.2015.14.1001

[18]

Jinliang Wang, Gang Huang, Yasuhiro Takeuchi, Shengqiang Liu. Sveir epidemiological model with varying infectivity and distributed delays. Mathematical Biosciences & Engineering, 2011, 8 (3) : 875-888. doi: 10.3934/mbe.2011.8.875

[19]

Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861

[20]

Edoardo Beretta, Dimitri Breda. Discrete or distributed delay? Effects on stability of population growth. Mathematical Biosciences & Engineering, 2016, 13 (1) : 19-41. doi: 10.3934/mbe.2016.13.19

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]