# American Institute of Mathematical Sciences

2010, 7(3): 687-717. doi: 10.3934/mbe.2010.7.687

## A cost-based comparison of quarantine strategies for new emerging diseases

 1 Mathematical, Computational & Modeling Science Center, Arizona State University, Tempe, AZ 85287-1904, United States 2 Department of Mathematics, The University of Texas at Arlington, Arlington, TX 76019-0408, United States 3 Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, United States

Received  January 2009 Revised  February 2010 Published  June 2010

A classical epidemiological framework is used to provide a preliminary cost analysis of the effects of quarantine and isolation on the dynamics of infectious diseases for which no treatment or immediate diagnosis tools are available. Within this framework we consider the cost incurred from the implementation of three types of dynamic control strategies. Taking the context of the 2003 SARS outbreak in Hong Kong as an example, we use a simple cost function to compare the total cost of each mixed (quarantine and isolation) control strategy from a public health resource allocation perspective. The goal is to extend existing epi-economics methodology by developing a theoretical framework of dynamic quarantine strategies aimed at emerging diseases, by drawing upon the large body of literature on the dynamics of infectious diseases. We find that the total cost decreases with increases in the quarantine rates past a critical value, regardless of the resource allocation strategy. In the case of a manageable outbreak resources must be used early to achieve the best results whereas in case of an unmanageable outbreak, a constant-effort strategy seems the best among our limited plausible sets.
Citation: Anuj Mubayi, Christopher Kribs Zaleta, Maia Martcheva, Carlos Castillo-Chávez. A cost-based comparison of quarantine strategies for new emerging diseases. Mathematical Biosciences & Engineering, 2010, 7 (3) : 687-717. doi: 10.3934/mbe.2010.7.687
 [1] Folashade B. Agusto. Optimal control and cost-effectiveness analysis of a three age-structured transmission dynamics of chikungunya virus. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 687-715. doi: 10.3934/dcdsb.2017034 [2] Bradley G. Wagner, Brian J. Coburn, Sally Blower. Increasing survival time decreases the cost-effectiveness of using "test & treat'' to eliminate HIV epidemics. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1673-1686. doi: 10.3934/mbe.2013.10.1673 [3] Jane M. Heffernan, Yijun Lou, Marc Steben, Jianhong Wu. Cost-effectiveness evaluation of gender-based vaccination programs against sexually transmitted infections. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 447-466. doi: 10.3934/dcdsb.2014.19.447 [4] Mohammad A. Safi, Abba B. Gumel. Global asymptotic dynamics of a model for quarantine and isolation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 209-231. doi: 10.3934/dcdsb.2010.14.209 [5] Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 [6] Z. Feng. Final and peak epidemic sizes for SEIR models with quarantine and isolation. Mathematical Biosciences & Engineering, 2007, 4 (4) : 675-686. doi: 10.3934/mbe.2007.4.675 [7] Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261 [8] Xi Huo. Modeling of contact tracing in epidemic populations structured by disease age. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1685-1713. doi: 10.3934/dcdsb.2015.20.1685 [9] Narges Montazeri Shahtori, Tanvir Ferdousi, Caterina Scoglio, Faryad Darabi Sahneh. Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1165-1180. doi: 10.3934/mbe.2018053 [10] Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 [11] Xiaoli Yang, Jin Liang, Bei Hu. Minimization of carbon abatement cost: Modeling, analysis and simulation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2939-2969. doi: 10.3934/dcdsb.2017158 [12] Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61 [13] Santanu Sarkar. Analysis of Hidden Number Problem with Hidden Multiplier. Advances in Mathematics of Communications, 2017, 11 (4) : 805-811. doi: 10.3934/amc.2017059 [14] Xiaoliang Cheng, Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of two quasistatic history-dependent contact models. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2425-2445. doi: 10.3934/dcdsb.2014.19.2425 [15] Maria-Magdalena Boureanu, Andaluzia Matei, Mircea Sofonea. Analysis of a contact problem for electro-elastic-visco-plastic materials. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1185-1203. doi: 10.3934/cpaa.2012.11.1185 [16] Stanisław Migórski, Anna Ochal, Mircea Sofonea. Analysis of a frictional contact problem for viscoelastic materials with long memory. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 687-705. doi: 10.3934/dcdsb.2011.15.687 [17] Stanislaw Migórski, Anna Ochal, Mircea Sofonea. Analysis of a dynamic Elastic-Viscoplastic contact problem with friction. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 887-902. doi: 10.3934/dcdsb.2008.10.887 [18] Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez. The Role of Vaccination in the Control of SARS. Mathematical Biosciences & Engineering, 2005, 2 (4) : 753-769. doi: 10.3934/mbe.2005.2.753 [19] Dennis L. Chao, Dobromir T. Dimitrov. Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences & Engineering, 2016, 13 (2) : 249-259. doi: 10.3934/mbe.2015001 [20] Shigui Ruan, Wendi Wang, Simon A. Levin. The effect of global travel on the spread of SARS. Mathematical Biosciences & Engineering, 2006, 3 (1) : 205-218. doi: 10.3934/mbe.2006.3.205

2018 Impact Factor: 1.313