2011, 8(4): 1035-1059. doi: 10.3934/mbe.2011.8.1035

Mathematical analysis and numerical simulation of a model of morphogenesis

1. 

Departamento de Matemática Aplicada, ESCET, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain

2. 

Departamento de Matemática Aplicada, E.U. Informática. Universidad Politécnica de Madrid, Ctra. de Valencia, Km. 7. 28031 - Madrid, Spain

Received  November 2009 Revised  January 2011 Published  August 2011

We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.
Citation: Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035
References:
[1]

F. W. Cummings, A model of morphogenesis,, Phys. A, 3-4 (2004), 3.

[2]

E. V. Entchev, A. Schwabedissen and M. González-Gaitán, Gradient formation of the TGF-beta homolog Dpp,, Cell, 103 (2000), 981. doi: 10.1016/S0092-8674(00)00200-2.

[3]

E. V. Entchev and M. González-Gaitán, Morphogen gradient formation and vesicular trafficking,, Traffic, 3 (2002), 98.

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1977).

[6]

B. Ka\'zmierczak and K. Piechór, Heteroclinic solutions for a model of skin morphogenesis. The case of strong attachment of the epidermis to the basal lamina,, Application of Mathematics in Biology and Medicine, (2004), 85.

[7]

M. Kerszberg and L. Wolpert, Mechanism for positional signalling by morphogen transport: A theoretical study,, J. Theor. Biol., 191 (1998), 103. doi: 10.1006/jtbi.1997.0575.

[8]

P. Krzyzanowski, P. Laurencot and D. Wrzosek, Well-posedness and convergence to the steady state for a model of morphogen transport,, SIAM J. Math. Anal., 40 (2008), 1725.

[9]

A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Agregation of a distributed source morphogen gradient degradation,, Studies in Appl. Math., 114 (2005), 343. doi: 10.1111/j.0022-2526.2005.01556.x.

[10]

A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion?,, Dev. Cell, 2 (2002), 785. doi: 10.1016/S1534-5807(02)00179-X.

[11]

A. D. Lander, Q. Nie and F. Y. M. Wan, Internalization and end flux in morphogen gradient degradation,, J. Comput. Appl. Math., 190 (2006), 232. doi: 10.1016/j.cam.2004.11.054.

[12]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).

[13]

Y. Lou, Q. Nie and F.Y.M. Wan, Effects of sog Dpp-receptor binding,, SIAM J. Appl. Math., 65 (2005), 1748. doi: 10.1137/S0036139903433219.

[14]

J. H. Merking, D. J. Needham and B. D. Sleeman, A mathematical model for the spread of morphogens with density dependent chemosensitivity,, Nonlinearity, 18 (2005), 2745. doi: 10.1088/0951-7715/18/6/018.

[15]

J. H. Merking and B. D. Sleeman, On the spread of morphogens,, J. Math. Biol., 51 (2005), 1. doi: 10.1007/s00285-004-0308-0.

[16]

R. E. Showalter, "Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, 49 (1997).

[17]

A. Teleman and S. Cohen, Dpp gradient formation in the Drosophila wing imaginal disc,, Cell, 103 (2000), 971. doi: 10.1016/S0092-8674(00)00199-9.

[18]

J. I. Tello, Mathematical analysis of a model of Morphogenesis,, Discrete and Continuous Dynamical Systems - Series A, 25 (2009), 343.

[19]

J. I. Tello, On the existence of solutions of a mathematical model of morphogens,, in, (2011), 495.

[20]

L. Wolpert, Positional information and the spatial pattern of cellular differentiation,, J. Theore. Biol., 25 (1969), 1. doi: 10.1016/S0022-5193(69)80016-0.

show all references

References:
[1]

F. W. Cummings, A model of morphogenesis,, Phys. A, 3-4 (2004), 3.

[2]

E. V. Entchev, A. Schwabedissen and M. González-Gaitán, Gradient formation of the TGF-beta homolog Dpp,, Cell, 103 (2000), 981. doi: 10.1016/S0092-8674(00)00200-2.

[3]

E. V. Entchev and M. González-Gaitán, Morphogen gradient formation and vesicular trafficking,, Traffic, 3 (2002), 98.

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1977).

[6]

B. Ka\'zmierczak and K. Piechór, Heteroclinic solutions for a model of skin morphogenesis. The case of strong attachment of the epidermis to the basal lamina,, Application of Mathematics in Biology and Medicine, (2004), 85.

[7]

M. Kerszberg and L. Wolpert, Mechanism for positional signalling by morphogen transport: A theoretical study,, J. Theor. Biol., 191 (1998), 103. doi: 10.1006/jtbi.1997.0575.

[8]

P. Krzyzanowski, P. Laurencot and D. Wrzosek, Well-posedness and convergence to the steady state for a model of morphogen transport,, SIAM J. Math. Anal., 40 (2008), 1725.

[9]

A. D. Lander, Q. Nie, B. Vargas and F. Y. M. Wan, Agregation of a distributed source morphogen gradient degradation,, Studies in Appl. Math., 114 (2005), 343. doi: 10.1111/j.0022-2526.2005.01556.x.

[10]

A. D. Lander, Q. Nie and F. Y. M. Wan, Do morphogen gradients arise by diffusion?,, Dev. Cell, 2 (2002), 785. doi: 10.1016/S1534-5807(02)00179-X.

[11]

A. D. Lander, Q. Nie and F. Y. M. Wan, Internalization and end flux in morphogen gradient degradation,, J. Comput. Appl. Math., 190 (2006), 232. doi: 10.1016/j.cam.2004.11.054.

[12]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", Dunod, (1969).

[13]

Y. Lou, Q. Nie and F.Y.M. Wan, Effects of sog Dpp-receptor binding,, SIAM J. Appl. Math., 65 (2005), 1748. doi: 10.1137/S0036139903433219.

[14]

J. H. Merking, D. J. Needham and B. D. Sleeman, A mathematical model for the spread of morphogens with density dependent chemosensitivity,, Nonlinearity, 18 (2005), 2745. doi: 10.1088/0951-7715/18/6/018.

[15]

J. H. Merking and B. D. Sleeman, On the spread of morphogens,, J. Math. Biol., 51 (2005), 1. doi: 10.1007/s00285-004-0308-0.

[16]

R. E. Showalter, "Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, 49 (1997).

[17]

A. Teleman and S. Cohen, Dpp gradient formation in the Drosophila wing imaginal disc,, Cell, 103 (2000), 971. doi: 10.1016/S0092-8674(00)00199-9.

[18]

J. I. Tello, Mathematical analysis of a model of Morphogenesis,, Discrete and Continuous Dynamical Systems - Series A, 25 (2009), 343.

[19]

J. I. Tello, On the existence of solutions of a mathematical model of morphogens,, in, (2011), 495.

[20]

L. Wolpert, Positional information and the spatial pattern of cellular differentiation,, J. Theore. Biol., 25 (1969), 1. doi: 10.1016/S0022-5193(69)80016-0.

[1]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[2]

Dagny Butler, Eunkyung Ko, R. Shivaji. Alternate steady states for classes of reaction diffusion models on exterior domains. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1181-1191. doi: 10.3934/dcdss.2014.7.1181

[3]

Bo Li, Xiaoyan Zhang. Steady states of a Sel'kov-Schnakenberg reaction-diffusion system. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1009-1023. doi: 10.3934/dcdss.2017053

[4]

Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189

[5]

Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486

[6]

Wenrui Hao, Jonathan D. Hauenstein, Bei Hu, Yuan Liu, Andrew J. Sommese, Yong-Tao Zhang. Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1413-1428. doi: 10.3934/dcdss.2011.4.1413

[7]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[8]

Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367

[9]

Wei-Ming Ni, Yaping Wu, Qian Xu. The existence and stability of nontrivial steady states for S-K-T competition model with cross diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5271-5298. doi: 10.3934/dcds.2014.34.5271

[10]

Aníbal Rodríguez-Bernal, Alejandro Vidal-López. A note on the existence of global solutions for reaction-diffusion equations with almost-monotonic nonlinearities. Communications on Pure & Applied Analysis, 2014, 13 (2) : 635-644. doi: 10.3934/cpaa.2014.13.635

[11]

Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049

[12]

Yunfeng Jia, Yi Li, Jianhua Wu. Qualitative analysis on positive steady-states for an autocatalytic reaction model in thermodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4785-4813. doi: 10.3934/dcds.2017206

[13]

Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75

[14]

Piermarco Cannarsa, Alexander Khapalov. Multiplicative controllability for reaction-diffusion equations with target states admitting finitely many changes of sign. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1293-1311. doi: 10.3934/dcdsb.2010.14.1293

[15]

Wei Feng, Weihua Ruan, Xin Lu. On existence of wavefront solutions in mixed monotone reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 815-836. doi: 10.3934/dcdsb.2016.21.815

[16]

Zhoude Shao. Existence and continuity of strong solutions of partly dissipative reaction diffusion systems. Conference Publications, 2011, 2011 (Special) : 1319-1328. doi: 10.3934/proc.2011.2011.1319

[17]

Anton Arnold, Laurent Desvillettes, Céline Prévost. Existence of nontrivial steady states for populations structured with respect to space and a continuous trait. Communications on Pure & Applied Analysis, 2012, 11 (1) : 83-96. doi: 10.3934/cpaa.2012.11.83

[18]

Shin-Yi Lee, Shin-Hwa Wang, Chiou-Ping Ye. Explicit necessary and sufficient conditions for the existence of a dead core solution of a p-laplacian steady-state reaction-diffusion problem. Conference Publications, 2005, 2005 (Special) : 587-596. doi: 10.3934/proc.2005.2005.587

[19]

Jong-Shenq Guo, Yoshihisa Morita. Entire solutions of reaction-diffusion equations and an application to discrete diffusive equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 193-212. doi: 10.3934/dcds.2005.12.193

[20]

Congming Li, Eric S. Wright. Global existence of solutions to a reaction diffusion system based upon carbonate reaction kinetics. Communications on Pure & Applied Analysis, 2002, 1 (1) : 77-84. doi: 10.3934/cpaa.2002.1.77

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (2)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]