• Previous Article
    A dynamic model describing heterotrophic culture of chorella and its stability analysis
  • MBE Home
  • This Issue
  • Next Article
    Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies
2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099

Dynamics of a delay Schistosomiasis model in snail infections

1. 

Department of Mathematics and Statistics, LAMPS and CDM, York University, Toronto, ON, M3J 1P3, Canada

2. 

Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematics, Nanjing Normal University, Nanjing, Jiangsu, 210046

3. 

Department of Mathematics and Statistics, Laboratory of Mathematical Parallel systems (LAMPS) and CDM, York University, Toronto M3J 1P3

Received  October 2010 Revised  May 2011 Published  August 2011

In this paper we modify and study a system of delay differential equations model proposed by Nåsell and Hirsch (1973) for the transmission dynamics of schistosomiasis. The modified stochastic version of MacDonald’s model takes into account the time delay for the transmission of infection. We carry out bifurcation studies of the model. The saddle-node bifurcation of the model suggests that the transmission and spread of schistosomiasis is initial size dependent. The existence of a Hopf bifurcation due to the delay indicates that the transmission can be periodic.
Citation: Chunhua Shan, Hongjun Gao, Huaiping Zhu. Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1099-1115. doi: 10.3934/mbe.2011.8.1099
References:
[1]

J. Carr, "Applications of Centre Manifold Theory,", Applied Mathematical Sciences, 35 (1981). Google Scholar

[2]

C. Castillo-Chavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay,, Math. Biosci., 211 (2008), 333. doi: 10.1016/j.mbs.2007.11.001. Google Scholar

[3]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Grundlehren der Mathematischen Wissenschaften, 251 (1982). Google Scholar

[4]

K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations,, Funkcial. Ekvac., 29 (1986), 77. Google Scholar

[5]

C. L. Cosgrove and V. R. Southgate, Mating interactions between Schistosoma mansoni and S. margrebowiei,, Parasitology, 125 (2002), 233. doi: 10.1017/S0031182002002111. Google Scholar

[6]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000). Google Scholar

[7]

T. Faria, Normal forms and bifurcations for delay differential equations,, in, 205 (2006), 227. Google Scholar

[8]

Z. Feng, C.-C. Li and F. A. Milner, Schistosomiasis models with density dependence and age of infection in snail dynamics,, Math. Biosci., 177/178 (2002), 271. doi: 10.1016/S0025-5564(01)00115-8. Google Scholar

[9]

Z. Feng, C.-C. Li and F. A. Milner, Schistosomiasis models with two migrating human groups,, Math. Comput. Modelling., 41 (2005), 1213. doi: 10.1016/j.mcm.2004.10.023. Google Scholar

[10]

M. Golubitsky and D. G Schaeffer, "Singularities and Groups in Bifurcation Theory,", Vol. I, 51 (1985). Google Scholar

[11]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Mathematics and its Applications, 74 (1992). Google Scholar

[12]

B. Gryseels, K. Polman, J. Clerinx and L. Kestens, Human schistosomiasis,, The Lancet., 368 (2006), 1106. doi: 10.1016/S0140-6736(06)69440-3. Google Scholar

[13]

J. K. Hale, "Theory of Functional Differential Equations,", Second edition, 3 (1977). Google Scholar

[14]

J. K. Hale and S. M. Lunel, "Introduction to Functional-Differential Equations,", Applied Mathematical Sciences, 99 (1993). Google Scholar

[15]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Application of Hopf Bifurcation,", London Mathematical Society Lecture Note Series, 41 (1981). Google Scholar

[16]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993). Google Scholar

[17]

G. MacDonald, The dynamics of helminth infections with spatial reference to schistosomes,, Trans. Roy. Soc. Trop. Med. Hyg., 59 (1965), 489. doi: 10.1016/0035-9203(65)90152-5. Google Scholar

[18]

I. Nåsell, A hybrid model of schistosomiasis with snail latency,, Theor. Popul. Biol., 10 (1976), 47. Google Scholar

[19]

I. Nåsell and W. M. Hirsch, The transmission dynamics of schistosomiasis,, Comm. Pure. Appl. Math., 26 (1973), 395. Google Scholar

[20]

E. M. T. Salvana and C. H. King, Schistosomiasis in travelers and immigrants,, Current Infectious Disease Reports, 10 (2008), 42. doi: 10.1007/s11908-008-0009-8. Google Scholar

[21]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[22]

World Health Organization, The control of schistosomiasis, Second report of the WHO Expert Committee,, World Health Organ Tech Rep Ser., 830 (1993), 1. Google Scholar

[23]

J. Wu, N. Liu and S. Zuo, The qualitative analysis of model of the transmission dynamics of Japanese schistosomiasis,, Applied Mathematics-A Journal of Chinese Universities, 2 (1987), 352. Google Scholar

[24]

J. Wu and Z. Feng, Mathematical models for schistosomiasis with delays and multiple definitive hosts,, in, 126 (2002), 215. Google Scholar

[25]

H. M. Yang, Comparison between schistosomiasis transmission modelings considering acquired immunity and age-structured contact pattern with infested water,, Math. Biosci., 184 (2003), 1. doi: 10.1016/S0025-5564(03)00045-2. Google Scholar

[26]

P. Zhang, Z. Feng and F. A. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies,, Math. Biosci., 205 (2007), 83. doi: 10.1016/j.mbs.2006.06.006. Google Scholar

[27]

X. Zhou, T. Wang and L. Wang, The current status of schistosomiasis epidemics in China (in Chinese),, Zhonghua Liu Xing Bing Xue Za Zhi, 25 (2004), 555. Google Scholar

show all references

References:
[1]

J. Carr, "Applications of Centre Manifold Theory,", Applied Mathematical Sciences, 35 (1981). Google Scholar

[2]

C. Castillo-Chavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay,, Math. Biosci., 211 (2008), 333. doi: 10.1016/j.mbs.2007.11.001. Google Scholar

[3]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Grundlehren der Mathematischen Wissenschaften, 251 (1982). Google Scholar

[4]

K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations,, Funkcial. Ekvac., 29 (1986), 77. Google Scholar

[5]

C. L. Cosgrove and V. R. Southgate, Mating interactions between Schistosoma mansoni and S. margrebowiei,, Parasitology, 125 (2002), 233. doi: 10.1017/S0031182002002111. Google Scholar

[6]

O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation,", Wiley Series in Mathematical and Computational Biology, (2000). Google Scholar

[7]

T. Faria, Normal forms and bifurcations for delay differential equations,, in, 205 (2006), 227. Google Scholar

[8]

Z. Feng, C.-C. Li and F. A. Milner, Schistosomiasis models with density dependence and age of infection in snail dynamics,, Math. Biosci., 177/178 (2002), 271. doi: 10.1016/S0025-5564(01)00115-8. Google Scholar

[9]

Z. Feng, C.-C. Li and F. A. Milner, Schistosomiasis models with two migrating human groups,, Math. Comput. Modelling., 41 (2005), 1213. doi: 10.1016/j.mcm.2004.10.023. Google Scholar

[10]

M. Golubitsky and D. G Schaeffer, "Singularities and Groups in Bifurcation Theory,", Vol. I, 51 (1985). Google Scholar

[11]

K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics,", Mathematics and its Applications, 74 (1992). Google Scholar

[12]

B. Gryseels, K. Polman, J. Clerinx and L. Kestens, Human schistosomiasis,, The Lancet., 368 (2006), 1106. doi: 10.1016/S0140-6736(06)69440-3. Google Scholar

[13]

J. K. Hale, "Theory of Functional Differential Equations,", Second edition, 3 (1977). Google Scholar

[14]

J. K. Hale and S. M. Lunel, "Introduction to Functional-Differential Equations,", Applied Mathematical Sciences, 99 (1993). Google Scholar

[15]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Application of Hopf Bifurcation,", London Mathematical Society Lecture Note Series, 41 (1981). Google Scholar

[16]

Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics,", Mathematics in Science and Engineering, 191 (1993). Google Scholar

[17]

G. MacDonald, The dynamics of helminth infections with spatial reference to schistosomes,, Trans. Roy. Soc. Trop. Med. Hyg., 59 (1965), 489. doi: 10.1016/0035-9203(65)90152-5. Google Scholar

[18]

I. Nåsell, A hybrid model of schistosomiasis with snail latency,, Theor. Popul. Biol., 10 (1976), 47. Google Scholar

[19]

I. Nåsell and W. M. Hirsch, The transmission dynamics of schistosomiasis,, Comm. Pure. Appl. Math., 26 (1973), 395. Google Scholar

[20]

E. M. T. Salvana and C. H. King, Schistosomiasis in travelers and immigrants,, Current Infectious Disease Reports, 10 (2008), 42. doi: 10.1007/s11908-008-0009-8. Google Scholar

[21]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[22]

World Health Organization, The control of schistosomiasis, Second report of the WHO Expert Committee,, World Health Organ Tech Rep Ser., 830 (1993), 1. Google Scholar

[23]

J. Wu, N. Liu and S. Zuo, The qualitative analysis of model of the transmission dynamics of Japanese schistosomiasis,, Applied Mathematics-A Journal of Chinese Universities, 2 (1987), 352. Google Scholar

[24]

J. Wu and Z. Feng, Mathematical models for schistosomiasis with delays and multiple definitive hosts,, in, 126 (2002), 215. Google Scholar

[25]

H. M. Yang, Comparison between schistosomiasis transmission modelings considering acquired immunity and age-structured contact pattern with infested water,, Math. Biosci., 184 (2003), 1. doi: 10.1016/S0025-5564(03)00045-2. Google Scholar

[26]

P. Zhang, Z. Feng and F. A. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies,, Math. Biosci., 205 (2007), 83. doi: 10.1016/j.mbs.2006.06.006. Google Scholar

[27]

X. Zhou, T. Wang and L. Wang, The current status of schistosomiasis epidemics in China (in Chinese),, Zhonghua Liu Xing Bing Xue Za Zhi, 25 (2004), 555. Google Scholar

[1]

Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419

[2]

Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923

[3]

Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203

[4]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[5]

Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911

[6]

Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21

[7]

W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete & Continuous Dynamical Systems - A, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351

[8]

Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069

[9]

Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215

[10]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[11]

Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997

[12]

Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045

[13]

John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805

[14]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[15]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[16]

Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205

[17]

Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152

[18]

Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503

[19]

Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457

[20]

Zuolin Shen, Junjie Wei. Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences & Engineering, 2018, 15 (3) : 693-715. doi: 10.3934/mbe.2018031

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]