-
Previous Article
Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization
- MBE Home
- This Issue
-
Next Article
Dynamics of a delay Schistosomiasis model in snail infections
A dynamic model describing heterotrophic culture of chorella and its stability analysis
1. | Department of Applied Mathematics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China |
2. | Department of Biological Science and Technology, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China |
3. | Graduate School of Science and Technology, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561 |
References:
[1] |
E. Beretta and Y. Takeuchi, Qualitative properties of chemostat equations with time delays,, Diff. Equ. Dyn. Sys., 2 (1994), 19. Google Scholar |
[2] |
G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM J. Appl. Math., 45 (1985), 138.
doi: 10.1137/0145006. |
[3] |
F. Chen and Y. Jiang, "Microalgal Biotechnology,", Chinese Light Industry Press, (1999). Google Scholar |
[4] |
L. Chen, "Nonlinear Biological Dynamical Systems,", Science Press, (1993). Google Scholar |
[5] |
A. Cunningham and P. Maas, Time lag and nutrient storage effects in the transient growth response of Chlamydomonas reinhardii in nitrogen-limited batch and continuous culture,, J. Gen. Microbiol., 104 (1978), 227. Google Scholar |
[6] |
A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dynamics of microalgae,, J. Theor. Biol., 84 (1980), 189.
doi: 10.1016/S0022-5193(80)80003-8. |
[7] |
S. F. Ellermeyer, S. S. Pilyugin and Ray Redheffer, Persistence criteria for a chemostat with variable nutrient input,, J. Diff. Eq., 171 (2001), 132.
|
[8] |
H. Endo, H. Hosoya and T. Koibuchi, Growth yields of Chlorella regularis in dark-heterotrophic continuous cultures using acetate,, J. Ferment. Technol., 55 (1977), 369. Google Scholar |
[9] |
J. K. Hale, "Ordinary Differential Equations," Second edition,, Robert E. Krieger Publishing Company, (1980).
|
[10] |
S. Han, Z. Zhang and H. Liu, Effects of Chlorella growth factor on physiological function,, Chinese J. Biochem. Pharmaceutics, 25 (2004), 5. Google Scholar |
[11] |
S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes,, Science, 207 (1980), 1491.
doi: 10.1126/science.6767274. |
[12] |
F. Khacik, Process for isolation, purification, and recrystallization of lutein from saponified marigold oleoresin and uses thereof: US patent,, 5382714, (): 1995. Google Scholar |
[13] |
J. T. Landrum and R. A. Bone, Lutein, zeaxanthin, and the macular pigment,, Arch. Biochem. Biophys., 385 (2001), 28.
doi: 10.1006/abbi.2000.2171. |
[14] |
J. A. Leon and D. B. Tumpson, Competition between two species for two complementary or substitutable resources,, J. Theor. Biol., 50 (1975), 185.
doi: 10.1016/0022-5193(75)90032-6. |
[15] |
L. W. Levy, Trans-xanthophyll ester concentrates of enhanced purity and method of making same: US patent,, 6191293, (): 2001. Google Scholar |
[16] |
B. Li, G. S. K. Wolkowicz and Y. Kuang, Global asymptotic behavior of a Chemostat model with two perfectly complementary resources and distributed delay,, SIAM J. Appl. Math., 60 (2000), 2058.
doi: 10.1137/S0036139999359756. |
[17] |
B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with internal storage,, J. Math. Biol., 55 (2007), 481.
doi: 10.1007/s00285-007-0092-8. |
[18] |
S. Liu, H. Meng, S. Liang, J. Yin and P. Mai, High-density heterotrophic culture of Chlorella Vulgaris in bioreactor,, J. South China Univ. Tech., 28 (2000), 81. Google Scholar |
[19] |
D. L. Madhavi and D. I. Kagan, Process for the isolation of mixed carotenoids from plants: US patent,, 6380442, (): 2002. Google Scholar |
[20] |
A. Narang and S. S. Pilyugin, Towards an integrated physiological theory of microbial growth: From subcellular variables to population dynamics,, Math. Biosci. Eng., 2 (2005), 169.
|
[21] |
J. C. Ogbonna, H. Masui and H. Tanaka, Sequential heterotrophic / autotrophic cultivation - An efficient method of producing Chlorella biomass for health food and animal feed,, J. Appl. Phycol., 9 (1997), 359.
doi: 10.1023/A:1007981930676. |
[22] |
J. C. Ogbonna, S. Tomiyama and H. Tanaka, Heterotrophic cultivation of Euglena gracilis Z for efficient production of $\alpha$-tocopherol,, J. Appl. Phycol., 10 (1998), 67.
doi: 10.1023/A:1008011201437. |
[23] |
T. Philip, Purification of lutein-fatty acid esters from plant materials: US patent,, 4048203, (1977). Google Scholar |
[24] |
S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield,, Math. Biosci., 182 (2003), 151.
doi: 10.1016/S0025-5564(02)00214-6. |
[25] |
K. Sasaki, K. Watanabe, T. Tanaka, Y. Hotta and S. Nagai, 5-aminolevulinic acid production by Chlorella sp. during heterotrophic cultivation in the dark,, World J. Microbiol. Biotech., 11 (1995), 361.
doi: 10.1007/BF00367123. |
[26] |
X. Shi, H. Liu, X. Zhang and F. Chen, Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures,, Process Biochem., 34 (1999), 341.
doi: 10.1016/S0032-9592(98)00101-0. |
[27] |
X. Shi, X. Zhang and F. Chen, Heterotrophic production of biomass and lutein Chlorella protothecoides on various nitrogen sources,, Enzyme Microb. Technol., 27 (2000), 312.
doi: 10.1016/S0141-0229(00)00208-8. |
[28] |
H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).
doi: 10.1017/CBO9780511530043. |
[29] |
H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: The variable-yield model,, SIAM J. Appl. Math., 54 (1994), 1113.
doi: 10.1137/S0036139993245344. |
[30] |
L. V. Thinh and D. J. Griffiths, Amino-acid composition of autotrophic and heterotrophic cultures of emerson strain of Chlorella,, Plant Cell Physiol., 17 (1976), 193. Google Scholar |
[31] |
S. Wang, H. Yan, B. Zhang, L. Lv and H. Lin, Effects of various nitrogen sources and phytohormones on growth and content of lutin in Chlorella sp. USTB01,, Sci. Tech. Review, 23 (2005), 37. Google Scholar |
[32] |
H. Xia, G. S. K. Wolkowicz and L. Wang, Transient oscillation induced by delayed growth response in the chemostat,, J. Math. Biol., 50 (2005), 489.
doi: 10.1007/s00285-004-0311-5. |
[33] |
K. Yamaguchi, Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review,, J. Appl. Phycol., 8 (1996), 487.
doi: 10.1007/BF02186327. |
[34] |
H. Yan, C. Ye and C. Yin, Kinetics of phthalate esters biodegradation by Chlorella pyrenoidosa,, Environ. Toxicol. Chem., 14 (1995), 931. Google Scholar |
[35] |
H. Yan and G. Pan, Toxicity and bioaccumulation of copper in three green microalgal species,, Chemosphere, 49 (2002), 471.
doi: 10.1016/S0045-6535(02)00285-0. |
[36] |
H. Yan, J. Zhou, H. He, Y. Wei and J. Sun, Isolation and heterotrophic culture of Chlorella sp.,, J. Univ. Sci. Tech. Beijing, 27 (2005), 408. Google Scholar |
[37] |
H. Yan, B. Zhang, S. Wang, Y. Li, S. Liu and S. Yang, Advances in the heterotrophic culture of Chlorella sp.,, Modern Chem. Indust., 27 (2007), 18. Google Scholar |
[38] |
H. Zhang, S. Sun, K. Mai and Y. Liang, Advances in the studies on heterotrophic culture of microalgae,, Trans. Oceanology Limnology, (2000), 51. Google Scholar |
[39] |
L. Zhang, R. Yang and H. Xiao, The heterotrophic culture of Chlorella and the optimization of growth condition,, Guihaia, 24 (2001), 353. Google Scholar |
[40] |
H. Zhou, W. Lin and T. Chen, The heterotrophy and applications of Chlorella,, Amino Acids Biotic Resources, 27 (2005), 69. Google Scholar |
show all references
References:
[1] |
E. Beretta and Y. Takeuchi, Qualitative properties of chemostat equations with time delays,, Diff. Equ. Dyn. Sys., 2 (1994), 19. Google Scholar |
[2] |
G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM J. Appl. Math., 45 (1985), 138.
doi: 10.1137/0145006. |
[3] |
F. Chen and Y. Jiang, "Microalgal Biotechnology,", Chinese Light Industry Press, (1999). Google Scholar |
[4] |
L. Chen, "Nonlinear Biological Dynamical Systems,", Science Press, (1993). Google Scholar |
[5] |
A. Cunningham and P. Maas, Time lag and nutrient storage effects in the transient growth response of Chlamydomonas reinhardii in nitrogen-limited batch and continuous culture,, J. Gen. Microbiol., 104 (1978), 227. Google Scholar |
[6] |
A. Cunningham and R. M. Nisbet, Time lag and co-operativity in the transient growth dynamics of microalgae,, J. Theor. Biol., 84 (1980), 189.
doi: 10.1016/S0022-5193(80)80003-8. |
[7] |
S. F. Ellermeyer, S. S. Pilyugin and Ray Redheffer, Persistence criteria for a chemostat with variable nutrient input,, J. Diff. Eq., 171 (2001), 132.
|
[8] |
H. Endo, H. Hosoya and T. Koibuchi, Growth yields of Chlorella regularis in dark-heterotrophic continuous cultures using acetate,, J. Ferment. Technol., 55 (1977), 369. Google Scholar |
[9] |
J. K. Hale, "Ordinary Differential Equations," Second edition,, Robert E. Krieger Publishing Company, (1980).
|
[10] |
S. Han, Z. Zhang and H. Liu, Effects of Chlorella growth factor on physiological function,, Chinese J. Biochem. Pharmaceutics, 25 (2004), 5. Google Scholar |
[11] |
S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretically forecast outcomes,, Science, 207 (1980), 1491.
doi: 10.1126/science.6767274. |
[12] |
F. Khacik, Process for isolation, purification, and recrystallization of lutein from saponified marigold oleoresin and uses thereof: US patent,, 5382714, (): 1995. Google Scholar |
[13] |
J. T. Landrum and R. A. Bone, Lutein, zeaxanthin, and the macular pigment,, Arch. Biochem. Biophys., 385 (2001), 28.
doi: 10.1006/abbi.2000.2171. |
[14] |
J. A. Leon and D. B. Tumpson, Competition between two species for two complementary or substitutable resources,, J. Theor. Biol., 50 (1975), 185.
doi: 10.1016/0022-5193(75)90032-6. |
[15] |
L. W. Levy, Trans-xanthophyll ester concentrates of enhanced purity and method of making same: US patent,, 6191293, (): 2001. Google Scholar |
[16] |
B. Li, G. S. K. Wolkowicz and Y. Kuang, Global asymptotic behavior of a Chemostat model with two perfectly complementary resources and distributed delay,, SIAM J. Appl. Math., 60 (2000), 2058.
doi: 10.1137/S0036139999359756. |
[17] |
B. Li and H. L. Smith, Global dynamics of microbial competition for two resources with internal storage,, J. Math. Biol., 55 (2007), 481.
doi: 10.1007/s00285-007-0092-8. |
[18] |
S. Liu, H. Meng, S. Liang, J. Yin and P. Mai, High-density heterotrophic culture of Chlorella Vulgaris in bioreactor,, J. South China Univ. Tech., 28 (2000), 81. Google Scholar |
[19] |
D. L. Madhavi and D. I. Kagan, Process for the isolation of mixed carotenoids from plants: US patent,, 6380442, (): 2002. Google Scholar |
[20] |
A. Narang and S. S. Pilyugin, Towards an integrated physiological theory of microbial growth: From subcellular variables to population dynamics,, Math. Biosci. Eng., 2 (2005), 169.
|
[21] |
J. C. Ogbonna, H. Masui and H. Tanaka, Sequential heterotrophic / autotrophic cultivation - An efficient method of producing Chlorella biomass for health food and animal feed,, J. Appl. Phycol., 9 (1997), 359.
doi: 10.1023/A:1007981930676. |
[22] |
J. C. Ogbonna, S. Tomiyama and H. Tanaka, Heterotrophic cultivation of Euglena gracilis Z for efficient production of $\alpha$-tocopherol,, J. Appl. Phycol., 10 (1998), 67.
doi: 10.1023/A:1008011201437. |
[23] |
T. Philip, Purification of lutein-fatty acid esters from plant materials: US patent,, 4048203, (1977). Google Scholar |
[24] |
S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield,, Math. Biosci., 182 (2003), 151.
doi: 10.1016/S0025-5564(02)00214-6. |
[25] |
K. Sasaki, K. Watanabe, T. Tanaka, Y. Hotta and S. Nagai, 5-aminolevulinic acid production by Chlorella sp. during heterotrophic cultivation in the dark,, World J. Microbiol. Biotech., 11 (1995), 361.
doi: 10.1007/BF00367123. |
[26] |
X. Shi, H. Liu, X. Zhang and F. Chen, Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures,, Process Biochem., 34 (1999), 341.
doi: 10.1016/S0032-9592(98)00101-0. |
[27] |
X. Shi, X. Zhang and F. Chen, Heterotrophic production of biomass and lutein Chlorella protothecoides on various nitrogen sources,, Enzyme Microb. Technol., 27 (2000), 312.
doi: 10.1016/S0141-0229(00)00208-8. |
[28] |
H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995).
doi: 10.1017/CBO9780511530043. |
[29] |
H. L. Smith and P. Waltman, Competition for a single limiting resource in continuous culture: The variable-yield model,, SIAM J. Appl. Math., 54 (1994), 1113.
doi: 10.1137/S0036139993245344. |
[30] |
L. V. Thinh and D. J. Griffiths, Amino-acid composition of autotrophic and heterotrophic cultures of emerson strain of Chlorella,, Plant Cell Physiol., 17 (1976), 193. Google Scholar |
[31] |
S. Wang, H. Yan, B. Zhang, L. Lv and H. Lin, Effects of various nitrogen sources and phytohormones on growth and content of lutin in Chlorella sp. USTB01,, Sci. Tech. Review, 23 (2005), 37. Google Scholar |
[32] |
H. Xia, G. S. K. Wolkowicz and L. Wang, Transient oscillation induced by delayed growth response in the chemostat,, J. Math. Biol., 50 (2005), 489.
doi: 10.1007/s00285-004-0311-5. |
[33] |
K. Yamaguchi, Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review,, J. Appl. Phycol., 8 (1996), 487.
doi: 10.1007/BF02186327. |
[34] |
H. Yan, C. Ye and C. Yin, Kinetics of phthalate esters biodegradation by Chlorella pyrenoidosa,, Environ. Toxicol. Chem., 14 (1995), 931. Google Scholar |
[35] |
H. Yan and G. Pan, Toxicity and bioaccumulation of copper in three green microalgal species,, Chemosphere, 49 (2002), 471.
doi: 10.1016/S0045-6535(02)00285-0. |
[36] |
H. Yan, J. Zhou, H. He, Y. Wei and J. Sun, Isolation and heterotrophic culture of Chlorella sp.,, J. Univ. Sci. Tech. Beijing, 27 (2005), 408. Google Scholar |
[37] |
H. Yan, B. Zhang, S. Wang, Y. Li, S. Liu and S. Yang, Advances in the heterotrophic culture of Chlorella sp.,, Modern Chem. Indust., 27 (2007), 18. Google Scholar |
[38] |
H. Zhang, S. Sun, K. Mai and Y. Liang, Advances in the studies on heterotrophic culture of microalgae,, Trans. Oceanology Limnology, (2000), 51. Google Scholar |
[39] |
L. Zhang, R. Yang and H. Xiao, The heterotrophic culture of Chlorella and the optimization of growth condition,, Guihaia, 24 (2001), 353. Google Scholar |
[40] |
H. Zhou, W. Lin and T. Chen, The heterotrophy and applications of Chlorella,, Amino Acids Biotic Resources, 27 (2005), 69. Google Scholar |
[1] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[2] |
Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277 |
[3] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[4] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[5] |
Ole Løseth Elvetun, Bjørn Fredrik Nielsen. A regularization operator for source identification for elliptic PDEs. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021006 |
[6] |
Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044 |
[7] |
Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020396 |
[8] |
Lei Yang, Lianzhang Bao. Numerical study of vanishing and spreading dynamics of chemotaxis systems with logistic source and a free boundary. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1083-1109. doi: 10.3934/dcdsb.2020154 |
[9] |
Claudio Arancibia-Ibarra, José Flores, Michael Bode, Graeme Pettet, Peter van Heijster. A modified May–Holling–Tanner predator-prey model with multiple Allee effects on the prey and an alternative food source for the predator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 943-962. doi: 10.3934/dcdsb.2020148 |
[10] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[11] |
Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020317 |
[12] |
Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326 |
[13] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[14] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[15] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[16] |
Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362 |
[17] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[18] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065 |
[19] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
[20] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]