• Previous Article
    Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle
  • MBE Home
  • This Issue
  • Next Article
    Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics
2011, 8(2): 463-473. doi: 10.3934/mbe.2011.8.463

Preliminary analysis of an agent-based model for a tick-borne disease

1. 

Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, United States

Received  March 2010 Revised  September 2010 Published  April 2011

Ticks have a unique life history including a distinct set of life stages and a single blood meal per life stage. This makes tick-host interactions more complex from a mathematical perspective. In addition, any model of these interactions must involve a significant degree of stochasticity on the individual tick level. In an attempt to quantify these relationships, I have developed an individual-based model of the interactions between ticks and their hosts as well as the transmission of tick-borne disease between the two populations. The results from this model are compared with those from previously published differential equation based population models. The findings show that the agent-based model produces significantly lower prevalence of disease in both the ticks and their hosts than what is predicted by a similar differential equation model.
Citation: Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463
References:
[1]

Centers for Disease Control and Prevention, Summary of Notifiable Diseases - United States, 2006,, MMWR, 55 (2008), 1.

[2]

D. E. Sonenshine and T. N. Mather, "Ecological Dynamics of Tick-Borne Zoonoses,", Oxford University Press, (1994).

[3]

H. Gaff and L. J. Gross, Analysis of a tick-borne disease model with varying population sizes in various habitats,, Bulletin of Mathematical Biology, 69 (2007), 265. doi: 10.1007/s11538-006-9125-5.

[4]

H. Gaff and E. Schaefer, Metapopulation models in tick-borne disease transmission modelling,, In, (2008).

[5]

H. Gaff, L. Gross and E. Schaefer, Results from a mathematical model for human monocytic ehrlichiosis,, Proceedings of the 5th Conference on Rickettsiae and Rickettsial diseases, 15 (2008), 1.

[6]

D. G. Haile and G. A. Mount, Computer simulation of population dynamics of the lone star tick, Amblyomma americanum (Acari: Ixodidae),, Journal of Medical Entomology, 24 (1987), 356.

[7]

G. A. Mount and D. G. Haile, Computer simulation of population dynamics of the American dog tick (Acari: Ixodidae),, Journal of Medical Entomology, 26 (1989), 60.

[8]

G. A. Mount, D. G. Haile, R. B. Davey and L. M. Cooksey, Computer simulation of boophilus cattle tick (Acari: Ixodidae) population dynamics,, Journal of Medical Entomology, 28 (1991), 223.

[9]

G. A. Mount, D. G. Haile, D. R. Barnard and E. Daniels, New version of LSTSIM for computer simulation of Amblyomma americanum (Acari: Ixodidae) population dynamics,, Journal of Medical Entomology, 30 (1993), 843.

[10]

G. A. Mount, D. G. Haile and E. Daniels, Simulation of blacklegged tick (Acari: Ixodidae) population dynamics and transmission of Borrelia burgdorferi,, Journal of Medical Entomology, 34 (1997), 461.

[11]

G. A. Mount, D. G. Haile and E. Daniels, Simulation of management strategies for the blacklegged tick (Acari: Ixodidae) and the Lyme disease spirochete, Borrelia burgdorferi,, Journal of Medical Entomology, 90 (1997), 672.

[12]

S. Sandberg, T. E. Awerbuch and A. Spielman, A comprehensive multiple matrix model representing the life cycle of the tick that transmits the age of Lyme disease,, Journal of Theoretical Biology, 157 (1992), 203. doi: 10.1016/S0022-5193(05)80621-6.

[13]

T. E. Awerbuch and S. Sandberg, Trends and oscillations in tick population dynamics,, Journal of Theoretical Biology, 175 (1995), 511. doi: 10.1006/jtbi.1995.0158.

[14]

S. Randolph, Epidemiological uses of a population model for the tick Rhipicephalus appendiculatus,, Tropical Medicine and International Health, 4 (1999). doi: 10.1046/j.1365-3156.1999.00449.x.

[15]

J. E. Bunnell, S. D. Price, A. Das, T. M. Shields and G. E. Glass, Geographic Information Systems and Spatial Analysis of Adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic Region of the U.S.A.,, Journal of Medical Entomology, 40 (2003), 570. doi: 10.1603/0022-2585-40.4.570.

[16]

A. Das, S. R. Lele, G. E. Glass, T. Shields and J. Petz, Modelling a discrete spatial response using generalized linear mixed models: Application to Lyme disease vectors,, International Journal of Geographical Information Science, 16 (2002), 151. doi: 10.1080/13658810110099134.

[17]

G. E. Glass, B. S. Schwartz, J. M. Morgan, D. T. Johnson, P. M. Noy and E. Israel, Environmental risk factors for Lyme disease identified with geographic information systems,, American Journal of Public Health, 85 (1995), 944. doi: 10.2105/AJPH.85.7.944.

[18]

W. E. Fitzgibbon, M. E. Parrott and G. F. Webb, A diffusive epidemic model for a host-vector system,, In, (1996).

[19]

J. Radcliffe and L. Rass, The spatial spread and final size of models for the deterministic host-vector epidemic,, Mathematical Biosciences, 70 (1984), 123. doi: 10.1016/0025-5564(84)90094-4.

[20]

J. Radcliffe and L. Rass, The rate of spread of infection in models for the deterministic host-vector epidemic,, Mathematical Biosciences, 74 (1985), 257. doi: 10.1016/0025-5564(85)90059-8.

[21]

A. R. Giardina, K. A. Schmidt, E. M. Schauber and R. S. Ostfeld, Modeling the role of songbirds and rodents in the ecology of Lyme disease,, Canadian Journal of Zoology, 78 (2000), 2184. doi: 10.1139/cjz-78-12-2184.

[22]

K. LoGiudice, R. S. Ostfeld, K. A. Schmidt and F. Keesing, The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk,, Proceedings of the National Academies of Science, 100 (2003), 567.

[23]

M. Ghosh and A. Pugliese, Seasonal population dynamics of ticks, and its influence on infection transmission: A semi- discrete approach,, Bulletin of Mathematical Biology, 66 (2004), 1659. doi: 10.1016/j.bulm.2004.03.007.

[24]

W. Ding, Optimal Control on Hybrid ODE Systems with Application to a Tick Disease Model,, Mathematical Biosciences and Engineering, 4 (2007), 633.

[25]

D. L. DeAngelis and L. J. Gross, "Individual-based Models and Approaches in Ecology: Populations, Communities and Ecosystems,", Taylor and Francis, (1992).

[26]

D. L. DeAngelis, L. J. Gross, W. F. Wolff, D. M. Fleming, M. P. Nott and E. J. Comiskey, Individual-based models on the landscape: Applications to the Everglades,, in, (2000).

[27]

S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai and N. Wang, Modelling disease outbreaks in realistic urban social networks,, Nature, 429 (2004), 180. doi: 10.1038/nature02541.

[28]

A. G. Barbour, "Lyme Disease: The Cause, the Cure, the Controversy,", John Hopkins University Press, (1996).

[29]

F. Des Vignes, M. L. Levin and D. Fish, Comparative vector competence of Dermacentor variabilis and Ixodes scapularis (Acari: Ixodidae) for the agent of human granulocytic ehrlichiosis,, Journal of Medical Entomology, 36 (1999), 182.

[30]

Dania Richter, Andrew Spielman, Nicholas Komar and Franz-Rainer Matuschka, Competence of American robins as reservoir hosts for Lyme disease spirochetes,, Emerging Infectious Diseases, 6 (2000), 133. doi: 10.3201/eid0602.000205.

[31]

V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S. K. Heinz, G. Huse, A. Huth, J. U. Jepsen, C. Jørgensen, W. M. Mooij, B. Müller, G. Peer, C. Piou, S. F. Railsback, A. M. Robbins, M. M. Robbins, E. Rossmanith, N. Rüger, E. Strand, S. Souissi, R. A. Stillman, R. Vabø, U. Visser and D. L. DeAngelis, A standard protocol for describing individual-based and agent-based models,, Ecological Modelling \textbf{198} (2006), 198 (2006), 115. doi: 10.1016/j.ecolmodel.2006.04.023.

[32]

A. L. Bauer, C. A. A. Beauchemin and A. S. Perelson, Agent-based modeling of host-pathogen systems: The successes and the challenges,, Information Sciences, 179 (2009), 1379. doi: 10.1016/j.ins.2008.11.012.

[33]

V. Grimm and S. F. Railsbeck, "Individual-based Modeling and Ecology,", Princeton University Press, (2005).

[34]

J. M. Lockhart, W. R. Davidson, J. E. Dawson and D. E. Stallknecht, Temporal association of Amblyomma americanum with the presence of Ehrlichia chaffeensis reactive antibodies in white-tailed deer,, Journal of Wildlife Diseases, 31 (1995), 119.

[35]

J. E. Dawson, J. E. Childs, K. L. Biggie, C. Moore, D. Stallknecht, J. Shaddock, J. Bouseman, E. Hofmeister and J. G. Olson, White-tailed deer as a potential reservoir of Ehrlichia spp.,, Journal of Wildlife Diseases, 30 (1994), 162.

[36]

B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs, J. F. Piesman, C. M. Happ, G. O. Maupin and B. J. B. Johnson, Amblyomma americanum: A potential vector of human ehrlichiosis,, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239.

show all references

References:
[1]

Centers for Disease Control and Prevention, Summary of Notifiable Diseases - United States, 2006,, MMWR, 55 (2008), 1.

[2]

D. E. Sonenshine and T. N. Mather, "Ecological Dynamics of Tick-Borne Zoonoses,", Oxford University Press, (1994).

[3]

H. Gaff and L. J. Gross, Analysis of a tick-borne disease model with varying population sizes in various habitats,, Bulletin of Mathematical Biology, 69 (2007), 265. doi: 10.1007/s11538-006-9125-5.

[4]

H. Gaff and E. Schaefer, Metapopulation models in tick-borne disease transmission modelling,, In, (2008).

[5]

H. Gaff, L. Gross and E. Schaefer, Results from a mathematical model for human monocytic ehrlichiosis,, Proceedings of the 5th Conference on Rickettsiae and Rickettsial diseases, 15 (2008), 1.

[6]

D. G. Haile and G. A. Mount, Computer simulation of population dynamics of the lone star tick, Amblyomma americanum (Acari: Ixodidae),, Journal of Medical Entomology, 24 (1987), 356.

[7]

G. A. Mount and D. G. Haile, Computer simulation of population dynamics of the American dog tick (Acari: Ixodidae),, Journal of Medical Entomology, 26 (1989), 60.

[8]

G. A. Mount, D. G. Haile, R. B. Davey and L. M. Cooksey, Computer simulation of boophilus cattle tick (Acari: Ixodidae) population dynamics,, Journal of Medical Entomology, 28 (1991), 223.

[9]

G. A. Mount, D. G. Haile, D. R. Barnard and E. Daniels, New version of LSTSIM for computer simulation of Amblyomma americanum (Acari: Ixodidae) population dynamics,, Journal of Medical Entomology, 30 (1993), 843.

[10]

G. A. Mount, D. G. Haile and E. Daniels, Simulation of blacklegged tick (Acari: Ixodidae) population dynamics and transmission of Borrelia burgdorferi,, Journal of Medical Entomology, 34 (1997), 461.

[11]

G. A. Mount, D. G. Haile and E. Daniels, Simulation of management strategies for the blacklegged tick (Acari: Ixodidae) and the Lyme disease spirochete, Borrelia burgdorferi,, Journal of Medical Entomology, 90 (1997), 672.

[12]

S. Sandberg, T. E. Awerbuch and A. Spielman, A comprehensive multiple matrix model representing the life cycle of the tick that transmits the age of Lyme disease,, Journal of Theoretical Biology, 157 (1992), 203. doi: 10.1016/S0022-5193(05)80621-6.

[13]

T. E. Awerbuch and S. Sandberg, Trends and oscillations in tick population dynamics,, Journal of Theoretical Biology, 175 (1995), 511. doi: 10.1006/jtbi.1995.0158.

[14]

S. Randolph, Epidemiological uses of a population model for the tick Rhipicephalus appendiculatus,, Tropical Medicine and International Health, 4 (1999). doi: 10.1046/j.1365-3156.1999.00449.x.

[15]

J. E. Bunnell, S. D. Price, A. Das, T. M. Shields and G. E. Glass, Geographic Information Systems and Spatial Analysis of Adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic Region of the U.S.A.,, Journal of Medical Entomology, 40 (2003), 570. doi: 10.1603/0022-2585-40.4.570.

[16]

A. Das, S. R. Lele, G. E. Glass, T. Shields and J. Petz, Modelling a discrete spatial response using generalized linear mixed models: Application to Lyme disease vectors,, International Journal of Geographical Information Science, 16 (2002), 151. doi: 10.1080/13658810110099134.

[17]

G. E. Glass, B. S. Schwartz, J. M. Morgan, D. T. Johnson, P. M. Noy and E. Israel, Environmental risk factors for Lyme disease identified with geographic information systems,, American Journal of Public Health, 85 (1995), 944. doi: 10.2105/AJPH.85.7.944.

[18]

W. E. Fitzgibbon, M. E. Parrott and G. F. Webb, A diffusive epidemic model for a host-vector system,, In, (1996).

[19]

J. Radcliffe and L. Rass, The spatial spread and final size of models for the deterministic host-vector epidemic,, Mathematical Biosciences, 70 (1984), 123. doi: 10.1016/0025-5564(84)90094-4.

[20]

J. Radcliffe and L. Rass, The rate of spread of infection in models for the deterministic host-vector epidemic,, Mathematical Biosciences, 74 (1985), 257. doi: 10.1016/0025-5564(85)90059-8.

[21]

A. R. Giardina, K. A. Schmidt, E. M. Schauber and R. S. Ostfeld, Modeling the role of songbirds and rodents in the ecology of Lyme disease,, Canadian Journal of Zoology, 78 (2000), 2184. doi: 10.1139/cjz-78-12-2184.

[22]

K. LoGiudice, R. S. Ostfeld, K. A. Schmidt and F. Keesing, The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk,, Proceedings of the National Academies of Science, 100 (2003), 567.

[23]

M. Ghosh and A. Pugliese, Seasonal population dynamics of ticks, and its influence on infection transmission: A semi- discrete approach,, Bulletin of Mathematical Biology, 66 (2004), 1659. doi: 10.1016/j.bulm.2004.03.007.

[24]

W. Ding, Optimal Control on Hybrid ODE Systems with Application to a Tick Disease Model,, Mathematical Biosciences and Engineering, 4 (2007), 633.

[25]

D. L. DeAngelis and L. J. Gross, "Individual-based Models and Approaches in Ecology: Populations, Communities and Ecosystems,", Taylor and Francis, (1992).

[26]

D. L. DeAngelis, L. J. Gross, W. F. Wolff, D. M. Fleming, M. P. Nott and E. J. Comiskey, Individual-based models on the landscape: Applications to the Everglades,, in, (2000).

[27]

S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai and N. Wang, Modelling disease outbreaks in realistic urban social networks,, Nature, 429 (2004), 180. doi: 10.1038/nature02541.

[28]

A. G. Barbour, "Lyme Disease: The Cause, the Cure, the Controversy,", John Hopkins University Press, (1996).

[29]

F. Des Vignes, M. L. Levin and D. Fish, Comparative vector competence of Dermacentor variabilis and Ixodes scapularis (Acari: Ixodidae) for the agent of human granulocytic ehrlichiosis,, Journal of Medical Entomology, 36 (1999), 182.

[30]

Dania Richter, Andrew Spielman, Nicholas Komar and Franz-Rainer Matuschka, Competence of American robins as reservoir hosts for Lyme disease spirochetes,, Emerging Infectious Diseases, 6 (2000), 133. doi: 10.3201/eid0602.000205.

[31]

V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S. K. Heinz, G. Huse, A. Huth, J. U. Jepsen, C. Jørgensen, W. M. Mooij, B. Müller, G. Peer, C. Piou, S. F. Railsback, A. M. Robbins, M. M. Robbins, E. Rossmanith, N. Rüger, E. Strand, S. Souissi, R. A. Stillman, R. Vabø, U. Visser and D. L. DeAngelis, A standard protocol for describing individual-based and agent-based models,, Ecological Modelling \textbf{198} (2006), 198 (2006), 115. doi: 10.1016/j.ecolmodel.2006.04.023.

[32]

A. L. Bauer, C. A. A. Beauchemin and A. S. Perelson, Agent-based modeling of host-pathogen systems: The successes and the challenges,, Information Sciences, 179 (2009), 1379. doi: 10.1016/j.ins.2008.11.012.

[33]

V. Grimm and S. F. Railsbeck, "Individual-based Modeling and Ecology,", Princeton University Press, (2005).

[34]

J. M. Lockhart, W. R. Davidson, J. E. Dawson and D. E. Stallknecht, Temporal association of Amblyomma americanum with the presence of Ehrlichia chaffeensis reactive antibodies in white-tailed deer,, Journal of Wildlife Diseases, 31 (1995), 119.

[35]

J. E. Dawson, J. E. Childs, K. L. Biggie, C. Moore, D. Stallknecht, J. Shaddock, J. Bouseman, E. Hofmeister and J. G. Olson, White-tailed deer as a potential reservoir of Ehrlichia spp.,, Journal of Wildlife Diseases, 30 (1994), 162.

[36]

B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs, J. F. Piesman, C. M. Happ, G. O. Maupin and B. J. B. Johnson, Amblyomma americanum: A potential vector of human ehrlichiosis,, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239.

[1]

Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567

[2]

Yijun Lou, Li Liu, Daozhou Gao. Modeling co-infection of Ixodes tick-borne pathogens. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1301-1316. doi: 10.3934/mbe.2017067

[3]

Holly Gaff, Robyn Nadolny. Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM. Mathematical Biosciences & Engineering, 2013, 10 (3) : 625-635. doi: 10.3934/mbe.2013.10.625

[4]

Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75

[5]

Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633

[6]

Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks & Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527

[7]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[8]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[9]

Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185

[10]

Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233-254. doi: 10.3934/mbe.2018010

[11]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[12]

Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou. Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 1033-1054. doi: 10.3934/mbe.2018046

[13]

Urszula Ledzewicz, Omeiza Olumoye, Heinz Schättler. On optimal chemotherapy with a strongly targeted agent for a model of tumor-immune system interactions with generalized logistic growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 787-802. doi: 10.3934/mbe.2013.10.787

[14]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[15]

John R. Graef, Michael Y. Li, Liancheng Wang. A study on the effects of disease caused death in a simple epidemic model. Conference Publications, 1998, 1998 (Special) : 288-300. doi: 10.3934/proc.1998.1998.288

[16]

W.R. Derrick, P. van den Driessche. Homoclinic orbits in a disease transmission model with nonlinear incidence and nonconstant population. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 299-309. doi: 10.3934/dcdsb.2003.3.299

[17]

Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021

[18]

Wenzhang Huang, Maoan Han, Kaiyu Liu. Dynamics of an SIS reaction-diffusion epidemic model for disease transmission. Mathematical Biosciences & Engineering, 2010, 7 (1) : 51-66. doi: 10.3934/mbe.2010.7.51

[19]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[20]

Nguyen Huu Du, Nguyen Thanh Dieu. Long-time behavior of an SIR model with perturbed disease transmission coefficient. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3429-3440. doi: 10.3934/dcdsb.2016105

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]