2011, 8(1): 65-76. doi: 10.3934/mbe.2011.8.65

Pandemic mitigation: Bringing it home

1. 

Entropy Research Institute, 345 S Great Rd, Lincoln MA 01773, United States

Received  July 2010 Revised  August 2010 Published  January 2011

In the US, national, regional and even institutional plans for ameliorating the effects of pandemic influenza focus on stockpiling antiviral medications, early production and distribution of vaccine, mass and personal social distancing, and a number of personal hygiene activities. Essential personnel are the first scheduled to receive preventive and therapeutic pharmaceuticals, followed by high risk groups, the largest of which are the elderly. Specific recommendations for protection embody a bunker mentality with a time horizon of two weeks, emulating preparation for a natural disaster. The epidemiology of pandemic influenza is scarcely considered.
   We summarize here the envelope of mortality attributable to epidemic and pandemic influenza in the last 90 years of the last century as a lead in to a presentation of the multinational case age distribution of the novel H1N1 pandemic of 2009. We discuss the sparing of elderly subpopulations in pandemics and the subsequent abrupt resurgence of mortality in the spared age groups as drift variants emerge. The general decline in the baseline of age-specific excess mortality in economically developed countries is characterized and its importance assessed.
   Models of acute and chronic care facilities are discussed and an argument is advanced that society as a whole as well as acute care facilities cannot be protected against incursion and widespread infection in pandemics of severity above low moderate. The key findings of models of chronic care institutions and others that can control public access, such as corporations, are used to describe programs with a realistic chance of providing protection in even severe pandemics. These principles are further mapped onto individual residences. Materials directing institutional and home planning are cited.
Citation: Tom Reichert. Pandemic mitigation: Bringing it home. Mathematical Biosciences & Engineering, 2011, 8 (1) : 65-76. doi: 10.3934/mbe.2011.8.65
References:
[1]

T. Reichert, G. Chowell, H. Nishiura, R. A. Christensen and J. A. McCullers, Does glycosylation as a modifier of original antigenic sin explain the case age distribution and unusual toxicity in pandemic novel H1N1 influenza?,, BMC Infect Dis, 10 (2010). doi: 10.1186/1471-2334-10-5.

[2]

L. Simonsen, M. J. Clarke, L. B. Schonberger, N. H. Arden, N. J. Cox and K. Fukuda, Pandemic versus epidemic influenza mortality: A pattern of changing age distribution,, J Infect Dis, 178 (1998), 53.

[3]

L. Simonsen, T. A. Reichert, C. Viboud, W. C. Blackwelder, R. J. Taylor and M. A. Miller, Impact of influenza vaccination on seasonal mortality in the US elderly population,, Arch Intern Med, 165 (2005), 265. doi: 10.1001/archinte.165.3.265.

[4]

, URL, , ().

[5]

, URL, , ().

[6]

M. Igarashi, K. Ito, R. Yoshida, D. Tomabechi, H. Kida, et al., Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin,, PLoS ONE, 5 (2010). doi: 10.1371/journal.pone.0008553.

[7]

C.-J. Wei, J. C. Boyington, K. Dai, K. V. Houser, M. B. Pearce, W.-P. Kong, Z.-Y. Yang, T. M. Tumpey and G. J. Nabel, Cross-neutralization of 1918 and 2009 influenza viruses: Role of glycans in viral evolution and vaccine design,, Sci. Transl. Med, 2 (2010).

[8]

T. Reichert and R. A. Christensen, It's not about smoldering or neuraminidase - There were two variants of the A(H3N2) pandemic virus differing in internal genes,, JID, 192 (2005), 1858. doi: 10.1086/497153.

[9]

W. R. Dowdle, Influenza A virus recycling revisited,, Bull WHO 1999, 77 (1999), 820.

[10]

D. Cohen and P. Carter, Conflict of Interest WHO and the pandemic flu "conspiracy",, BMJ, 340 (2010).

[11]

The Macroepidemiology of Influenza Vaccination (MIV) Study Group, The macroepidemiology of influenza vaccination in 56 countries, 1997-2003,, Vaccine, 23 (2005), 5133. doi: 10.1016/j.vaccine.2005.06.010.

[12]

D. M. Morens, D. S. Burke and S. B. Halstead, The wages of original antigenic sin,, EID, 16 (2010), 1023.

[13]

T. Francis, Doctrine of original antigenic sin,, Proc Am Philos Soc, 104 (1960), 572.

[14]

, URL, , ().

[15]

H. Markel et al., Nonpharmaceutical interventions implemented during the 1918-1919 influenza pandemic,, J Am Med Assoc, 298 (2007), 644.

[16]

H. Markel, A. M. Stern, J. A. Navarro and J. R. Michalsen, "A Historical Assessment of Nonpharmaceutical Disease Containment Strategies Employed by Selected U.S. Communities During the Second Wave of the 1918-1920 Influenza Pandemic,", , ().

[17]

J. M. Barry, Letter to the editor,, J Am Med Assoc, 298 (2007).

[18]

M. Nuno, G. Chowell and A. B. Gumel, Assessing the role of basic control measures,antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK, and the Netherlands,, Proc R Soc Interface, 4 (2007), 505. doi: 10.1098/rsif.2006.0186.

[19]

M. Nuno, T. A. Reichert, G. Chowell and A. B. Gumel, Protecting residential care facilities against pandemic influenza: Interactive translational research involving SLIR stochastic models,, PNAS, 105 (2008), 10625. doi: 10.1073/pnas.0712014105.

[20]

, http://pandemicflu.gov/individualfamily/checklist.html,, accessed on 28 July, (2010).

[21]

Flu Pandemic Planning for Residential Care, is a copyrighted DVD/CD combination that provides detailed, instruction and templates for developing and implementing a pandemic plan for a residential facility,, It is available at , ().

[22]

Defending Your Family from a Flu Pandemic, is a DVD copyrighted in 2009 and available from FluDefender,, LLC at GriffithVideo@gmail.com., ().

[23]

G. Chowell, C. Viboud, X. Wang, S. M. Bertozzi and M. A. Miller, Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study,, PLoS One, 4 (2009). doi: 10.1371/journal.pone.0008164.

[24]

J. Medlock and A. P. Galvani, Optimizing influenza vaccine distribution,, Science, 325 (2009), 1705. doi: 10.1126/science.1175570.

show all references

References:
[1]

T. Reichert, G. Chowell, H. Nishiura, R. A. Christensen and J. A. McCullers, Does glycosylation as a modifier of original antigenic sin explain the case age distribution and unusual toxicity in pandemic novel H1N1 influenza?,, BMC Infect Dis, 10 (2010). doi: 10.1186/1471-2334-10-5.

[2]

L. Simonsen, M. J. Clarke, L. B. Schonberger, N. H. Arden, N. J. Cox and K. Fukuda, Pandemic versus epidemic influenza mortality: A pattern of changing age distribution,, J Infect Dis, 178 (1998), 53.

[3]

L. Simonsen, T. A. Reichert, C. Viboud, W. C. Blackwelder, R. J. Taylor and M. A. Miller, Impact of influenza vaccination on seasonal mortality in the US elderly population,, Arch Intern Med, 165 (2005), 265. doi: 10.1001/archinte.165.3.265.

[4]

, URL, , ().

[5]

, URL, , ().

[6]

M. Igarashi, K. Ito, R. Yoshida, D. Tomabechi, H. Kida, et al., Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin,, PLoS ONE, 5 (2010). doi: 10.1371/journal.pone.0008553.

[7]

C.-J. Wei, J. C. Boyington, K. Dai, K. V. Houser, M. B. Pearce, W.-P. Kong, Z.-Y. Yang, T. M. Tumpey and G. J. Nabel, Cross-neutralization of 1918 and 2009 influenza viruses: Role of glycans in viral evolution and vaccine design,, Sci. Transl. Med, 2 (2010).

[8]

T. Reichert and R. A. Christensen, It's not about smoldering or neuraminidase - There were two variants of the A(H3N2) pandemic virus differing in internal genes,, JID, 192 (2005), 1858. doi: 10.1086/497153.

[9]

W. R. Dowdle, Influenza A virus recycling revisited,, Bull WHO 1999, 77 (1999), 820.

[10]

D. Cohen and P. Carter, Conflict of Interest WHO and the pandemic flu "conspiracy",, BMJ, 340 (2010).

[11]

The Macroepidemiology of Influenza Vaccination (MIV) Study Group, The macroepidemiology of influenza vaccination in 56 countries, 1997-2003,, Vaccine, 23 (2005), 5133. doi: 10.1016/j.vaccine.2005.06.010.

[12]

D. M. Morens, D. S. Burke and S. B. Halstead, The wages of original antigenic sin,, EID, 16 (2010), 1023.

[13]

T. Francis, Doctrine of original antigenic sin,, Proc Am Philos Soc, 104 (1960), 572.

[14]

, URL, , ().

[15]

H. Markel et al., Nonpharmaceutical interventions implemented during the 1918-1919 influenza pandemic,, J Am Med Assoc, 298 (2007), 644.

[16]

H. Markel, A. M. Stern, J. A. Navarro and J. R. Michalsen, "A Historical Assessment of Nonpharmaceutical Disease Containment Strategies Employed by Selected U.S. Communities During the Second Wave of the 1918-1920 Influenza Pandemic,", , ().

[17]

J. M. Barry, Letter to the editor,, J Am Med Assoc, 298 (2007).

[18]

M. Nuno, G. Chowell and A. B. Gumel, Assessing the role of basic control measures,antivirals and vaccine in curtailing pandemic influenza: Scenarios for the US, UK, and the Netherlands,, Proc R Soc Interface, 4 (2007), 505. doi: 10.1098/rsif.2006.0186.

[19]

M. Nuno, T. A. Reichert, G. Chowell and A. B. Gumel, Protecting residential care facilities against pandemic influenza: Interactive translational research involving SLIR stochastic models,, PNAS, 105 (2008), 10625. doi: 10.1073/pnas.0712014105.

[20]

, http://pandemicflu.gov/individualfamily/checklist.html,, accessed on 28 July, (2010).

[21]

Flu Pandemic Planning for Residential Care, is a copyrighted DVD/CD combination that provides detailed, instruction and templates for developing and implementing a pandemic plan for a residential facility,, It is available at , ().

[22]

Defending Your Family from a Flu Pandemic, is a DVD copyrighted in 2009 and available from FluDefender,, LLC at GriffithVideo@gmail.com., ().

[23]

G. Chowell, C. Viboud, X. Wang, S. M. Bertozzi and M. A. Miller, Adaptive vaccination strategies to mitigate pandemic influenza: Mexico as a case study,, PLoS One, 4 (2009). doi: 10.1371/journal.pone.0008164.

[24]

J. Medlock and A. P. Galvani, Optimizing influenza vaccine distribution,, Science, 325 (2009), 1705. doi: 10.1126/science.1175570.

[1]

Ioannis Baltas, Anastasios Xepapadeas, Athanasios N. Yannacopoulos. Robust portfolio decisions for financial institutions. Journal of Dynamics & Games, 2018, 5 (2) : 61-94. doi: 10.3934/jdg.2018006

[2]

Eunha Shim. Prioritization of delayed vaccination for pandemic influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 95-112. doi: 10.3934/mbe.2011.8.95

[3]

Maria Colombo, Alessio Figalli. An excess-decay result for a class of degenerate elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 631-652. doi: 10.3934/dcdss.2014.7.631

[4]

Mina Youssef, Caterina Scoglio. Mitigation of epidemics in contact networks through optimal contact adaptation. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1227-1251. doi: 10.3934/mbe.2013.10.1227

[5]

Jian Mao, Qixiao Lin, Jingdong Bian. Application of learning algorithms in smart home IoT system security. Mathematical Foundations of Computing, 2018, 1 (1) : 63-76. doi: 10.3934/mfc.2018004

[6]

Christopher S. Bowman, Julien Arino, S.M. Moghadas. Evaluation of vaccination strategies during pandemic outbreaks. Mathematical Biosciences & Engineering, 2011, 8 (1) : 113-122. doi: 10.3934/mbe.2011.8.113

[7]

Julien Arino, Chris Bauch, Fred Brauer, S. Michelle Driedger, Amy L. Greer, S.M. Moghadas, Nick J. Pizzi, Beate Sander, Ashleigh Tuite, P. van den Driessche, James Watmough, Jianhong Wu, Ping Yan. Pandemic influenza: Modelling and public health perspectives. Mathematical Biosciences & Engineering, 2011, 8 (1) : 1-20. doi: 10.3934/mbe.2011.8.1

[8]

Rong Liu, Feng-Qin Zhang, Yuming Chen. Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3603-3618. doi: 10.3934/dcdsb.2016112

[9]

Zhipeng Qiu, Huaiping Zhu. Complex dynamics of a nutrient-plankton system with nonlinear phytoplankton mortality and allelopathy. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2703-2728. doi: 10.3934/dcdsb.2016069

[10]

J. X. Velasco-Hernández, M. Núñez-López, G. Ramírez-Santiago, M. Hernández-Rosales. On carrying-capacity construction, metapopulations and density-dependent mortality. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1099-1110. doi: 10.3934/dcdsb.2017054

[11]

Gongpin Cheng, Rongming Wang, Dingjun Yao. Optimal dividend and capital injection strategy with excess-of-loss reinsurance and transaction costs. Journal of Industrial & Management Optimization, 2018, 14 (1) : 371-395. doi: 10.3934/jimo.2017051

[12]

Rodolfo Acuňa-Soto, Luis Castaňeda-Davila, Gerardo Chowell. A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences & Engineering, 2011, 8 (1) : 223-238. doi: 10.3934/mbe.2011.8.223

[13]

Diána H. Knipl, Gergely Röst. Modelling the strategies for age specific vaccination scheduling during influenza pandemic outbreaks. Mathematical Biosciences & Engineering, 2011, 8 (1) : 123-139. doi: 10.3934/mbe.2011.8.123

[14]

Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

[15]

John E. Franke, Abdul-Aziz Yakubu. Periodically forced discrete-time SIS epidemic model with disease induced mortality. Mathematical Biosciences & Engineering, 2011, 8 (2) : 385-408. doi: 10.3934/mbe.2011.8.385

[16]

Alhadi E. Alamir, Gomah E. Nenaah, Mohamed A. Hafiz. Mathematical probit and logistic mortality models of the Khapra beetle fumigated with plant essential oils. Mathematical Biosciences & Engineering, 2015, 12 (4) : 687-697. doi: 10.3934/mbe.2015.12.687

[17]

Chuangxia Huang, Hua Zhang, Lihong Huang. Almost periodicity analysis for a delayed Nicholson's blowflies model with nonlinear density-dependent mortality term. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3337-3349. doi: 10.3934/cpaa.2019150

[18]

Raimund Bürger, Gerardo Chowell, Pep Mulet, Luis M. Villada. Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile. Mathematical Biosciences & Engineering, 2016, 13 (1) : 43-65. doi: 10.3934/mbe.2016.13.43

[19]

Olivia Prosper, Omar Saucedo, Doria Thompson, Griselle Torres-Garcia, Xiaohong Wang, Carlos Castillo-Chavez. Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza. Mathematical Biosciences & Engineering, 2011, 8 (1) : 141-170. doi: 10.3934/mbe.2011.8.141

[20]

Sherry Towers, Katia Vogt Geisse, Chia-Chun Tsai, Qing Han, Zhilan Feng. The impact of school closures on pandemic influenza: Assessing potential repercussions using a seasonal SIR model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 413-430. doi: 10.3934/mbe.2012.9.413

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]