2011, 8(3): 753-768. doi: 10.3934/mbe.2011.8.753

Malaria model with stage-structured mosquitoes

1. 

Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899

Received  November 2010 Revised  November 2010 Published  June 2011

A simple SEIR model for malaria transmission dynamics is formulated as our baseline model. The metamorphic stages in the mosquito population are then included and a simple stage-structured mosquito population model is introduced, where the mosquito population is divided into two classes, with all three aquatic stages in one class and all adults in the other class, to keep the model tractable in mathematical analysis. After a brief investigation of this simple stage-structured mosquito model, it is incorporated into the baseline model to formulate a stage-structured malaria model. A basic analysis for the stage-structured malaria model is provided and it is shown that a theoretical framework can be built up for further studies on the impact of environmental or climate change on the malaria transmission. It is also shown that both the baseline and the stage-structured malaria models undergo backward bifurcations.
Citation: Jia Li. Malaria model with stage-structured mosquitoes. Mathematical Biosciences & Engineering, 2011, 8 (3) : 753-768. doi: 10.3934/mbe.2011.8.753
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford Univ. Press, (1991). Google Scholar

[2]

J. Arino, C. C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260. doi: 10.1137/S0036139902413829. Google Scholar

[3]

J. L. Aron, Mathematical modeling of immunity to malaria,, Math. Biosci., 90 (1988), 385. doi: 10.1016/0025-5564(88)90076-4. Google Scholar

[4]

N. Becker, "Mosquitoes and Their Control,", Kluwer Academic/Plenum, (2003). Google Scholar

[5]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,", Computer Science and Applied Mathematics, (1979). Google Scholar

[6]

F. Brauer, Backward bifurcations in simple vacicnation models,, J. Math. Anal. Appl., 298 (2004), 418. doi: 10.1016/j.jmaa.2004.05.045. Google Scholar

[7]

CDC, Malaria Fact Sheet, 2010., Available from: \url{http://www.cdc.gov/malaria/about/facts.html}., (). Google Scholar

[8]

A. N. Clements, "Development, Nutrition and Reproduction,", The Biology of Mosquitoes, 1 (2000). Google Scholar

[9]

R. C. Dhiman, S. Pahwa and A. P. Dash, Climate change and malaria in India: Interplay between temperatures ans mosquitoes,, Regional Health Forum, 12 (2008), 27. Google Scholar

[10]

K. Dietz, Mathematical models for transmission and control of malaria,, in, II (1988), 1091. Google Scholar

[11]

K. Dietz, L. Molineaux and A. Thomas, A malaria model tested in the African savannah,, Bull. World Health Org., 50 (1974), 347. Google Scholar

[12]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Theory of Plannar Differential Systems,", Springer-Verlag, (2006). Google Scholar

[13]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases,, J. Math. Biol., 36 (1998), 227. doi: 10.1007/s002850050099. Google Scholar

[14]

C. Dye, Intraspecific competition amongst larval Aedes aegypti: Food exploitation or chemical interference,, Ecol. Entom., 7 (1982), 39. doi: 10.1111/j.1365-2311.1982.tb00642.x. Google Scholar

[15]

D. A. Focks, D. G. Haile, E. Daniels and G. A. Mount, Dynamics life table model for Aedes aegypti (L.) (Diptera: Culicidae),, J. Med. Entomol., 30 (1993), 1003. Google Scholar

[16]

S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics,, Math. Biosci., 215 (2008), 11. doi: 10.1016/j.mbs.2008.05.002. Google Scholar

[17]

R. M. Gleiser, J. Urrutia and D. E. Gorla, Effects of crowding on populations of Aedes albifasciatus larvae under laboratory conditions,, Entomologia Experimentalis et Applicata, 95 (2000), 135. doi: 10.1046/j.1570-7458.2000.00651.x. Google Scholar

[18]

E. A. Gould and S. Higgs, Impact of climate change and other factors on emerging arbovirus diseases,, Transactions of the Royal Society of Tropical Medicine and Hygience, 103 (2009), 109. doi: 10.1016/j.trstmh.2008.07.025. Google Scholar

[19]

K. P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control,, Math. Biosci., 146 (1997), 15. doi: 10.1016/S0025-5564(97)00027-8. Google Scholar

[20]

A. Hainesa, R. S. Kovatsa, D. Campbell-Lendrumb and C. Corvalan, Climate change and human health: Impacts, vulnerability and public health,, Public Health, 120 (2006), 585. doi: 10.1016/j.puhe.2006.01.002. Google Scholar

[21]

M. B. Hoshen and A. P. Morse, A weather-driven model of malaria transmission,, Malaria Journal, 3 (2004). doi: 10.1186/1475-2875-3-32. Google Scholar

[22]

J. M. Hyman and Jia Li, The Reproductive number for an HIV model with differential infectivity and staged progression,, Lin. Al. Appl., 398 (2005), 101. doi: 10.1016/j.laa.2004.07.017. Google Scholar

[23]

H. Kielhöfer, "Bifurcation Theory: An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004). Google Scholar

[24]

Jia Li, Malaria models with partial immunity in humans,, Math. Biol. Eng., 5 (2008), 789. Google Scholar

[25]

Jia Li, Simple stage-structured models for wild and transgenic mosquito populations,, J. Diff. Eqns. Appl., 15 (2009), 327. Google Scholar

[26]

Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population,, SIAM J. Appl. Math., 70 (2010), 2023. doi: 10.1137/080744438. Google Scholar

[27]

W. J. M. Martens, L. Niessen, J. Rotmans, T. H. Jetten and J. McMichael, Climate change and vector-borne diseases: A global modelling perspective,, Global Environ Change, 5 (1995), 195. doi: 10.1016/0959-3780(95)00051-O. Google Scholar

[28]

G. MacDonald, "The Epidemiology and Control of Malaria,", Oxford Univ. Press, (1957). Google Scholar

[29]

P. Martens, R. S. Kovats, S. Nijhof, P. Vries, M. T. J. Livermore, D. J. Bradley, J. Cox and A. J. McMichael, Climate change and future populations at risk of malaria,, Global Environ Change, 9 (1999). doi: 10.1016/S0959-3780(99)00020-5. Google Scholar

[30]

L. Molineaux, The pros and cons of modeling malaria transmission,, Trans. R. Soc. Trop. Med. Hyg., 79 (1985), 743. doi: 10.1016/0035-9203(85)90107-5. Google Scholar

[31]

Mosquito, 2010., Available from: \url{http://www.enchantedlearning.com/subjects/insects/mosquito}., 2010 (). Google Scholar

[32]

G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations,, Discrete and Continuous Dynamical Systems-Series B, 4 (2004), 1173. doi: 10.3934/dcdsb.2004.4.1173. Google Scholar

[33]

G. A. Ngwa, On the population dynamics of the malaria vector,, Bull Math Biol., 68 (2006), 2161. doi: 10.1007/s11538-006-9104-x. Google Scholar

[34]

G. A. Ngwa and W. S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations,, Math. Comp. Modelling, 32 (2000), 747. doi: 10.1016/S0895-7177(00)00169-2. Google Scholar

[35]

M. Otero, H. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate,, Bull. Math. Biol., 68 (2006), 1945. doi: 10.1007/s11538-006-9067-y. Google Scholar

[36]

K. P. Paaijmans, A. F. Read and M. B. Thomas, Understanding the link between malaria risk and climate,, Proc. Natl. Acad. Sci. \textbf{106} (2009), 106 (2009), 13844. doi: 10.1073/pnas.0903423106. Google Scholar

[37]

R. Ross, "The Prevention of Malaria,", John Murray, (1911). Google Scholar

[38]

D. Ruiz, G. Poveda, I. D. Velez, M. L. Quinones, G. L. Rua, L. E. Velasquesz and J. S. Zuluaga, Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: Contributions to a national malaria early warning system,, Malaria Journal, 5 (2006). doi: 10.1186/1475-2875-5-66. Google Scholar

[39]

M. Safan, H. Heesterbeek and K. Dietz, The minimum effort required to eradicate infections in models with backward bifurcation,, J. Math. Biol., 53 (2006), 703. doi: 10.1007/s00285-006-0028-8. Google Scholar

[40]

W. H. Wernsdorfer, The importance of malaria in the world,, in, 1 (1980). Google Scholar

[41]

WHO, "Malaria Fact Sheets," 2010., Available from: \url{http://www.who.int/mediacentre/factsheets/fs094/en/index.html}., 2010 (). Google Scholar

[42]

H. M. Yang, Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector),, Rev Saude Publica, 34 (2000), 223. doi: 10.1590/S0034-89102000000300003. Google Scholar

[43]

H. M. Yang and M. U. Ferreira, Assessing the effects of global warming and local social economic conditions on the malaria transmission,, Rev Saude Publica, 34 (2000), 214. doi: 10.1590/S0034-89102000000300002. Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford Univ. Press, (1991). Google Scholar

[2]

J. Arino, C. C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation,, SIAM J. Appl. Math., 64 (2003), 260. doi: 10.1137/S0036139902413829. Google Scholar

[3]

J. L. Aron, Mathematical modeling of immunity to malaria,, Math. Biosci., 90 (1988), 385. doi: 10.1016/0025-5564(88)90076-4. Google Scholar

[4]

N. Becker, "Mosquitoes and Their Control,", Kluwer Academic/Plenum, (2003). Google Scholar

[5]

A. Berman and R. J. Plemmons, "Nonnegative Matrices in the Mathematical Sciences,", Computer Science and Applied Mathematics, (1979). Google Scholar

[6]

F. Brauer, Backward bifurcations in simple vacicnation models,, J. Math. Anal. Appl., 298 (2004), 418. doi: 10.1016/j.jmaa.2004.05.045. Google Scholar

[7]

CDC, Malaria Fact Sheet, 2010., Available from: \url{http://www.cdc.gov/malaria/about/facts.html}., (). Google Scholar

[8]

A. N. Clements, "Development, Nutrition and Reproduction,", The Biology of Mosquitoes, 1 (2000). Google Scholar

[9]

R. C. Dhiman, S. Pahwa and A. P. Dash, Climate change and malaria in India: Interplay between temperatures ans mosquitoes,, Regional Health Forum, 12 (2008), 27. Google Scholar

[10]

K. Dietz, Mathematical models for transmission and control of malaria,, in, II (1988), 1091. Google Scholar

[11]

K. Dietz, L. Molineaux and A. Thomas, A malaria model tested in the African savannah,, Bull. World Health Org., 50 (1974), 347. Google Scholar

[12]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Theory of Plannar Differential Systems,", Springer-Verlag, (2006). Google Scholar

[13]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backwards bifurcations and catastrophe in simple models of fatal diseases,, J. Math. Biol., 36 (1998), 227. doi: 10.1007/s002850050099. Google Scholar

[14]

C. Dye, Intraspecific competition amongst larval Aedes aegypti: Food exploitation or chemical interference,, Ecol. Entom., 7 (1982), 39. doi: 10.1111/j.1365-2311.1982.tb00642.x. Google Scholar

[15]

D. A. Focks, D. G. Haile, E. Daniels and G. A. Mount, Dynamics life table model for Aedes aegypti (L.) (Diptera: Culicidae),, J. Med. Entomol., 30 (1993), 1003. Google Scholar

[16]

S. M. Garba, A. B. Gumel and M. R. Abu Bakar, Backward bifurcations in dengue transmission dynamics,, Math. Biosci., 215 (2008), 11. doi: 10.1016/j.mbs.2008.05.002. Google Scholar

[17]

R. M. Gleiser, J. Urrutia and D. E. Gorla, Effects of crowding on populations of Aedes albifasciatus larvae under laboratory conditions,, Entomologia Experimentalis et Applicata, 95 (2000), 135. doi: 10.1046/j.1570-7458.2000.00651.x. Google Scholar

[18]

E. A. Gould and S. Higgs, Impact of climate change and other factors on emerging arbovirus diseases,, Transactions of the Royal Society of Tropical Medicine and Hygience, 103 (2009), 109. doi: 10.1016/j.trstmh.2008.07.025. Google Scholar

[19]

K. P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control,, Math. Biosci., 146 (1997), 15. doi: 10.1016/S0025-5564(97)00027-8. Google Scholar

[20]

A. Hainesa, R. S. Kovatsa, D. Campbell-Lendrumb and C. Corvalan, Climate change and human health: Impacts, vulnerability and public health,, Public Health, 120 (2006), 585. doi: 10.1016/j.puhe.2006.01.002. Google Scholar

[21]

M. B. Hoshen and A. P. Morse, A weather-driven model of malaria transmission,, Malaria Journal, 3 (2004). doi: 10.1186/1475-2875-3-32. Google Scholar

[22]

J. M. Hyman and Jia Li, The Reproductive number for an HIV model with differential infectivity and staged progression,, Lin. Al. Appl., 398 (2005), 101. doi: 10.1016/j.laa.2004.07.017. Google Scholar

[23]

H. Kielhöfer, "Bifurcation Theory: An Introduction with Applications to PDEs,", Applied Mathematical Sciences, 156 (2004). Google Scholar

[24]

Jia Li, Malaria models with partial immunity in humans,, Math. Biol. Eng., 5 (2008), 789. Google Scholar

[25]

Jia Li, Simple stage-structured models for wild and transgenic mosquito populations,, J. Diff. Eqns. Appl., 15 (2009), 327. Google Scholar

[26]

Y. Lou and X.-Q. Zhao, A climate-based malaria transmission model with structured vector population,, SIAM J. Appl. Math., 70 (2010), 2023. doi: 10.1137/080744438. Google Scholar

[27]

W. J. M. Martens, L. Niessen, J. Rotmans, T. H. Jetten and J. McMichael, Climate change and vector-borne diseases: A global modelling perspective,, Global Environ Change, 5 (1995), 195. doi: 10.1016/0959-3780(95)00051-O. Google Scholar

[28]

G. MacDonald, "The Epidemiology and Control of Malaria,", Oxford Univ. Press, (1957). Google Scholar

[29]

P. Martens, R. S. Kovats, S. Nijhof, P. Vries, M. T. J. Livermore, D. J. Bradley, J. Cox and A. J. McMichael, Climate change and future populations at risk of malaria,, Global Environ Change, 9 (1999). doi: 10.1016/S0959-3780(99)00020-5. Google Scholar

[30]

L. Molineaux, The pros and cons of modeling malaria transmission,, Trans. R. Soc. Trop. Med. Hyg., 79 (1985), 743. doi: 10.1016/0035-9203(85)90107-5. Google Scholar

[31]

Mosquito, 2010., Available from: \url{http://www.enchantedlearning.com/subjects/insects/mosquito}., 2010 (). Google Scholar

[32]

G. A. Ngwa, Modelling the dynamics of endemic malaria in growing populations,, Discrete and Continuous Dynamical Systems-Series B, 4 (2004), 1173. doi: 10.3934/dcdsb.2004.4.1173. Google Scholar

[33]

G. A. Ngwa, On the population dynamics of the malaria vector,, Bull Math Biol., 68 (2006), 2161. doi: 10.1007/s11538-006-9104-x. Google Scholar

[34]

G. A. Ngwa and W. S. Shu, A mathematical model for endemic malaria with variable human and mosquito populations,, Math. Comp. Modelling, 32 (2000), 747. doi: 10.1016/S0895-7177(00)00169-2. Google Scholar

[35]

M. Otero, H. G. Solari and N. Schweigmann, A stochastic population dynamics model for Aedes aegypti: Formulation and application to a city with temperate climate,, Bull. Math. Biol., 68 (2006), 1945. doi: 10.1007/s11538-006-9067-y. Google Scholar

[36]

K. P. Paaijmans, A. F. Read and M. B. Thomas, Understanding the link between malaria risk and climate,, Proc. Natl. Acad. Sci. \textbf{106} (2009), 106 (2009), 13844. doi: 10.1073/pnas.0903423106. Google Scholar

[37]

R. Ross, "The Prevention of Malaria,", John Murray, (1911). Google Scholar

[38]

D. Ruiz, G. Poveda, I. D. Velez, M. L. Quinones, G. L. Rua, L. E. Velasquesz and J. S. Zuluaga, Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: Contributions to a national malaria early warning system,, Malaria Journal, 5 (2006). doi: 10.1186/1475-2875-5-66. Google Scholar

[39]

M. Safan, H. Heesterbeek and K. Dietz, The minimum effort required to eradicate infections in models with backward bifurcation,, J. Math. Biol., 53 (2006), 703. doi: 10.1007/s00285-006-0028-8. Google Scholar

[40]

W. H. Wernsdorfer, The importance of malaria in the world,, in, 1 (1980). Google Scholar

[41]

WHO, "Malaria Fact Sheets," 2010., Available from: \url{http://www.who.int/mediacentre/factsheets/fs094/en/index.html}., 2010 (). Google Scholar

[42]

H. M. Yang, Malaria transmission model for different levels of acquired immunity and temperature-dependent parameters (vector),, Rev Saude Publica, 34 (2000), 223. doi: 10.1590/S0034-89102000000300003. Google Scholar

[43]

H. M. Yang and M. U. Ferreira, Assessing the effects of global warming and local social economic conditions on the malaria transmission,, Rev Saude Publica, 34 (2000), 214. doi: 10.1590/S0034-89102000000300002. Google Scholar

[1]

Jinping Fang, Guang Lin, Hui Wan. Analysis of a stage-structured dengue model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 4045-4061. doi: 10.3934/dcdsb.2018125

[2]

Qing Zhu, Huaqin Peng, Xiaoxiao Zheng, Huafeng Xiao. Bifurcation analysis of a stage-structured predator-prey model with prey refuge. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2195-2209. doi: 10.3934/dcdss.2019141

[3]

Ruijun Zhao, Jemal Mohammed-Awel. A mathematical model studying mosquito-stage transmission-blocking vaccines. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1229-1245. doi: 10.3934/mbe.2014.11.1229

[4]

Shangzhi Li, Shangjiang Guo. Dynamics of a two-species stage-structured model incorporating state-dependent maturation delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1393-1423. doi: 10.3934/dcdsb.2017067

[5]

Hui Wan, Jing-An Cui. A model for the transmission of malaria. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 479-496. doi: 10.3934/dcdsb.2009.11.479

[6]

Guirong Jiang, Qishao Lu, Linping Peng. Impulsive Ecological Control Of A Stage-Structured Pest Management System. Mathematical Biosciences & Engineering, 2005, 2 (2) : 329-344. doi: 10.3934/mbe.2005.2.329

[7]

Bruno Buonomo, Deborah Lacitignola. On the stabilizing effect of cannibalism in stage-structured population models. Mathematical Biosciences & Engineering, 2006, 3 (4) : 717-731. doi: 10.3934/mbe.2006.3.717

[8]

Wei Feng, Michael T. Cowen, Xin Lu. Coexistence and asymptotic stability in stage-structured predator-prey models. Mathematical Biosciences & Engineering, 2014, 11 (4) : 823-839. doi: 10.3934/mbe.2014.11.823

[9]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[10]

Liming Cai, Jicai Huang, Xinyu Song, Yuyue Zhang. Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6279-6295. doi: 10.3934/dcdsb.2019139

[11]

Sabri Bensid, Jesús Ildefonso Díaz. On the exact number of monotone solutions of a simplified Budyko climate model and their different stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1033-1047. doi: 10.3934/dcdsb.2019005

[12]

G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517

[13]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[14]

Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049

[15]

Yunfei Lv, Rong Yuan, Yuan He. Wavefronts of a stage structured model with state--dependent delay. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4931-4954. doi: 10.3934/dcds.2015.35.4931

[16]

Bassidy Dembele, Abdul-Aziz Yakubu. Optimal treated mosquito bed nets and insecticides for eradication of malaria in Missira. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1831-1840. doi: 10.3934/dcdsb.2012.17.1831

[17]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[18]

Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261

[19]

Cruz Vargas-De-León. Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes. Mathematical Biosciences & Engineering, 2012, 9 (1) : 165-174. doi: 10.3934/mbe.2012.9.165

[20]

Joseph A. Biello, Peter R. Kramer, Yuri Lvov. Stages of energy transfer in the FPU model. Conference Publications, 2003, 2003 (Special) : 113-122. doi: 10.3934/proc.2003.2003.113

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]