2011, 8(3): 827-840. doi: 10.3934/mbe.2011.8.827

Global dynamics of the chemostat with different removal rates and variable yields

1. 

Université de Haute Alsace, Mulhouse, France

2. 

Projet INRIA DISCO, CNRS-SUPELEC, 3 Rue Joliot Curie, 91192, Gif-sur-Yvette, France

Received  April 2010 Revised  November 2010 Published  June 2011

In this paper, we consider a competition model between $n$ species in a chemostat including both monotone and non-monotone growth functions, distinct removal rates and variable yields. We show that only the species with the lowest break-even concentration survives, provided that additional technical conditions on the growth functions and yields are satisfied. We construct a Lyapunov function which reduces to the Lyapunov function used by S. B. Hsu [SIAM J. Appl. Math., 34 (1978), pp. 760-763] in the Monod case when the growth functions are of Michaelis-Menten type and the yields are constant. Various applications are given including linear, quadratic and cubic yields.
Citation: Tewfik Sari, Frederic Mazenc. Global dynamics of the chemostat with different removal rates and variable yields. Mathematical Biosciences & Engineering, 2011, 8 (3) : 827-840. doi: 10.3934/mbe.2011.8.827
References:
[1]

J. Arino, S. S. Pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models,, Canadian Applied Mathematics Quarterly, 11 (2003), 107. Google Scholar

[2]

R. A. Armstrong and R. McGehee, Competitive exclusion,, Amer. Natur., 115 (1980), 151. doi: 10.1086/283553. Google Scholar

[3]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM Journal on Applied Mathematics, 45 (1985), 138. doi: 10.1137/0145006. Google Scholar

[4]

P. Gajardo, F. Mazenc and H. C. Ramírez, Competitive exclusion principle in a model of chemostat with delays,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 16 (2009), 253. Google Scholar

[5]

S. B. Hsu, Limiting behavior for competing species,, SIAM Journal on Applied Mathematics, 34 (1978), 760. doi: 10.1137/0134064. Google Scholar

[6]

S. B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single nutrient competition in continuous cultures of micro-organisms,, SIAM Journal on Applied Mathematics, 32 (1977), 366. doi: 10.1137/0132030. Google Scholar

[7]

X. Huang, L. Zhu and E. H. C. Chang, Limit cycles in a chemostat with variable yields and growth rates,, Nonlinear Analysis Real World Applications, 8 (2007), 165. doi: 10.1016/j.nonrwa.2005.06.007. Google Scholar

[8]

P. de Leenheer, B. Li and H. L. Smith, Competition in the chemostat: Some remarks,, Can. Appl. Math. Q., 11 (2003), 229. Google Scholar

[9]

B. Li, Global asymptotic behavior of the chemostat: General response functions and differential removal rates,, SIAM Journal on Applied Mathematics, 59 (1999), 411. doi: 10.1137/S003613999631100X. Google Scholar

[10]

C. Lobry and F. Mazenc, Effect on persistence of intra-specific competition in competition models,, Electron. J. Differential Equations, 2007 (). Google Scholar

[11]

M. Malisoff and F. Mazenc, "Constructions of Strict Lyapunov Functions,", Communications and Control Engineering Series, (2009). doi: 10.1007/978-1-84882-535-2. Google Scholar

[12]

F. Mazenc, M. Malisoff and J. Harmand, Stabilization in a two-species chemostat with Monod growth functions,, IEEE Trans. Automat. Control, 54 (2009), 855. doi: 10.1109/TAC.2008.2010964. Google Scholar

[13]

F. Mazenc, M. Malisoff and J. Harmand, Further results on stabilization of periodic trajectories for a chemostat with two species,, IEEE Trans. Circuits Syst. I. Regul. Pap., 2008 (): 66. Google Scholar

[14]

F. Mazenc, M. Malisoff and P. De Leenheer, On the stability of periodic solutions in the perturbed chemostat,, Math. Biosci. Eng., 4 (2007), 319. Google Scholar

[15]

J. Monod, La technique de culture continue. Théorie et applications,, Ann. Inst. Pasteur, 79 (1950), 390. Google Scholar

[16]

S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield,, Mathematical Biosciences, 182 (2003), 151. doi: 10.1016/S0025-5564(02)00214-6. Google Scholar

[17]

A. Rapaport and J. Harmand, Biological control of the chemostat with nonmonotone response and different removal rates,, Math. Biosci. Eng., 5 (2008), 539. Google Scholar

[18]

T. Sari, A Lyapunov function for the chemostat with variable yields,, C. R. Math. Acad. Sci. Paris, 348 (2010), 747. Google Scholar

[19]

H. L. Smith, P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). Google Scholar

[20]

G. S. K. Wolkowicz, M. M Ballyk and Z. Lu, Microbial dynamics in a chemostat: Competition, growth, implication of enrichment,, Lecture Notes in Pure and Appl. Math., 176 (1996). Google Scholar

[21]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates,, SIAM Journal on Applied Mathematics, 52 (1992), 222. doi: 10.1137/0152012. Google Scholar

[22]

G. S. K. Wolkowicz and H. Xia, Global asymptotic behavior of a chemostat model with discrete delays,, SIAM Journal on Applied Mathematics, 57 (1997), 1019. doi: 10.1137/S0036139995287314. Google Scholar

show all references

References:
[1]

J. Arino, S. S. Pilyugin and G. S. K. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models,, Canadian Applied Mathematics Quarterly, 11 (2003), 107. Google Scholar

[2]

R. A. Armstrong and R. McGehee, Competitive exclusion,, Amer. Natur., 115 (1980), 151. doi: 10.1086/283553. Google Scholar

[3]

G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a general class of functions describing nutrient uptake,, SIAM Journal on Applied Mathematics, 45 (1985), 138. doi: 10.1137/0145006. Google Scholar

[4]

P. Gajardo, F. Mazenc and H. C. Ramírez, Competitive exclusion principle in a model of chemostat with delays,, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 16 (2009), 253. Google Scholar

[5]

S. B. Hsu, Limiting behavior for competing species,, SIAM Journal on Applied Mathematics, 34 (1978), 760. doi: 10.1137/0134064. Google Scholar

[6]

S. B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single nutrient competition in continuous cultures of micro-organisms,, SIAM Journal on Applied Mathematics, 32 (1977), 366. doi: 10.1137/0132030. Google Scholar

[7]

X. Huang, L. Zhu and E. H. C. Chang, Limit cycles in a chemostat with variable yields and growth rates,, Nonlinear Analysis Real World Applications, 8 (2007), 165. doi: 10.1016/j.nonrwa.2005.06.007. Google Scholar

[8]

P. de Leenheer, B. Li and H. L. Smith, Competition in the chemostat: Some remarks,, Can. Appl. Math. Q., 11 (2003), 229. Google Scholar

[9]

B. Li, Global asymptotic behavior of the chemostat: General response functions and differential removal rates,, SIAM Journal on Applied Mathematics, 59 (1999), 411. doi: 10.1137/S003613999631100X. Google Scholar

[10]

C. Lobry and F. Mazenc, Effect on persistence of intra-specific competition in competition models,, Electron. J. Differential Equations, 2007 (). Google Scholar

[11]

M. Malisoff and F. Mazenc, "Constructions of Strict Lyapunov Functions,", Communications and Control Engineering Series, (2009). doi: 10.1007/978-1-84882-535-2. Google Scholar

[12]

F. Mazenc, M. Malisoff and J. Harmand, Stabilization in a two-species chemostat with Monod growth functions,, IEEE Trans. Automat. Control, 54 (2009), 855. doi: 10.1109/TAC.2008.2010964. Google Scholar

[13]

F. Mazenc, M. Malisoff and J. Harmand, Further results on stabilization of periodic trajectories for a chemostat with two species,, IEEE Trans. Circuits Syst. I. Regul. Pap., 2008 (): 66. Google Scholar

[14]

F. Mazenc, M. Malisoff and P. De Leenheer, On the stability of periodic solutions in the perturbed chemostat,, Math. Biosci. Eng., 4 (2007), 319. Google Scholar

[15]

J. Monod, La technique de culture continue. Théorie et applications,, Ann. Inst. Pasteur, 79 (1950), 390. Google Scholar

[16]

S. S. Pilyugin and P. Waltman, Multiple limit cycles in the chemostat with variable yield,, Mathematical Biosciences, 182 (2003), 151. doi: 10.1016/S0025-5564(02)00214-6. Google Scholar

[17]

A. Rapaport and J. Harmand, Biological control of the chemostat with nonmonotone response and different removal rates,, Math. Biosci. Eng., 5 (2008), 539. Google Scholar

[18]

T. Sari, A Lyapunov function for the chemostat with variable yields,, C. R. Math. Acad. Sci. Paris, 348 (2010), 747. Google Scholar

[19]

H. L. Smith, P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cambridge Studies in Mathematical Biology, 13 (1995). Google Scholar

[20]

G. S. K. Wolkowicz, M. M Ballyk and Z. Lu, Microbial dynamics in a chemostat: Competition, growth, implication of enrichment,, Lecture Notes in Pure and Appl. Math., 176 (1996). Google Scholar

[21]

G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates,, SIAM Journal on Applied Mathematics, 52 (1992), 222. doi: 10.1137/0152012. Google Scholar

[22]

G. S. K. Wolkowicz and H. Xia, Global asymptotic behavior of a chemostat model with discrete delays,, SIAM Journal on Applied Mathematics, 57 (1997), 1019. doi: 10.1137/S0036139995287314. Google Scholar

[1]

Alain Rapaport, Mario Veruete. A new proof of the competitive exclusion principle in the chemostat. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3755-3764. doi: 10.3934/dcdsb.2018314

[2]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[3]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[4]

Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663

[5]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[6]

Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683

[7]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[8]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[9]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[10]

Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145

[11]

Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048

[12]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

[13]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[14]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

[15]

Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481

[16]

Peter Giesl. Construction of a global Lyapunov function using radial basis functions with a single operator. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 101-124. doi: 10.3934/dcdsb.2007.7.101

[17]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[18]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

[19]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[20]

Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]