
Previous Article
An SEIR epidemic model with constant latency time and infectious period
 MBE Home
 This Issue

Next Article
A mathematical model for cellular immunology of tuberculosis
Effects of spatial structure and diffusion on the performances of the chemostat
1.  UMR INRA/SupAgro 'MISTEA' and EPI INRA/INRIA 'MODEMIC', 2, pl. Viala 34060, Montpellier, France 
2.  UMR Analyse des Systèmes et Biométrie, INRA, EPI INRA/INRIA 'MODEMIC', 2 pl. Viala 34060 Montpellier 
3.  UMR INRA/SupAgro/CIRAD/IRD 'Eco&Sols', 2, pl. Viala 34060, Montpellier, France 
References:
[1] 
C. de Gooijer, W. Bakker, H. Beeftink and J. Tramper, Bioreactors in series: An overview of design procedures and practical applications,, Enzyme and Microbial Technology, 18 (1996), 202. 
[2] 
C. de Gooijer, H. Beeftink and J. Tramper, Optimal design of a series of continuous stirred tank reactors containing immobilised growing cells,, Biotechnology Letters, 18 (1996), 397. 
[3] 
P. Doran, Design of mixing systems for plant cell suspensions in stirred reactors,, Biotechnology Progress, 15 (1999), 319. 
[4] 
A. Dramé, J. Harmand, A. Rapaport and C. Lobry, Multiple steady state profiles in interconnected biological systems,, Mathematical and Computer Modelling of Dynamical Systems, 12 (2006), 379. 
[5] 
A. Dramé, C. Lobry, J. Harmand, A. Rapaport and F. Mazenc, Multiple stable equilibrium profiles in tubular bioreactors,, Mathematical and Computer Modelling, 48 (2008), 1840. 
[6] 
S. Foger, "Elements of Chemical Reaction Engineering,", 4^{th} edition, (2008). 
[7] 
A. Grobicki and D. Stuckey, Hydrodynamic characteristics of the anaerobic baffled reactor,, Water Research, 26 (1992), 371. 
[8] 
L. Grady, G. Daigger and H. Lim, "Biological Wastewater Treatment,'' 3^{nd} edition,, Environmental Science and Pollution Control Series, (1999). 
[9] 
D. Gravel, F. Guichard, M. Loreau and N. Mouquet, Source and sink dynamics in metaecosystems,, Ecology, 91 (2010), 2172. 
[10] 
I. Hanski, "Metapopulation Ecology,'', Oxford University Press, (1999). 
[11] 
J. Harmand, A. Rapaport and A. Trofino, Optimal design of two interconnected bioreactorssome new results,, American Institute of Chemical Engineering Journal, 49 (1999), 1433. 
[12] 
J. Harmand, A. Rapaport and A. Dramé, Optimal design of two interconnected enzymatic reactors,, Journal of Process Control, 14 (2004), 785. 
[13] 
J. Harmand and D. Dochain, Towards a unified approach for the design of interconnected catalytic and autocatalytic reactors,, Computers and Chemical Engineering, 30 (2005), 70. 
[14] 
G. Hill and C. Robinson, Minimum tank volumes for CFST bioreactors in series,, The Canadian Journal of Chemical Engineering, 67 (1989), 818. 
[15] 
W. Hu, K. Wlashchin, M. Betenbaugh, F. Wurm, G. Seth and W. Zhou, "Cellular Bioprocess Technology, Fundamentals and Frontier,'', Lectures Notes, (2007). 
[16] 
O. Levenspiel, "Chemical Reaction Engineering,'', 3^{nd} edition, (1999). 
[17] 
R. Lovitt and J. Wimpenny, The gradostat: A bidirectional compound chemostat and its applications in microbial research,, Journal of General Microbiology, 127 (1981), 261. 
[18] 
K. Luyben and J. Tramper, Optimal design for continuously stirred tank reactors in series using MichaelisMenten kinetics,, Biotechnology and Bioengineering, 24 (1982), 1217. 
[19] 
R. MacArthur and E. Wilson, "The Theory of Island Biogeography,'', Princeton University Press, (1967). 
[20] 
K. Mischaikow, H. Smith and H. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions,, Transactions of the American Mathematical Society, 347 (1995), 1669. doi: 10.2307/2154964. 
[21] 
J. Monod, La technique de la culture continue: Théorie et applications,, Annales de l'Institut Pasteur, 79 (1950), 390. 
[22] 
S. Nakaoka and Y. Takeuchi, Competition in chemostattype equations with two habitats,, Mathematical Bioscience, 201 (2006), 157. 
[23] 
M. Nelson and H. Sidhu, Evaluating the performance of a cascade of two bioreactors,, Chemical Engineering Science, 61 (2006), 3159. 
[24] 
A. Novick and L. Szilard, Description of the chemostat,, Science, 112 (1950), 715. 
[25] 
A. Rapaport, J. Harmand and F. Mazenc, Coexistence in the design of a series of two chemostats,, Nonlinear Analysis, 9 (2008), 1052. 
[26] 
E. Roca, C. Ghommidh, J.M. Navarro and J.M. Lema, Hydraulic model of a gaslift bioreactor with flocculating yeast,, Bioprocess and Biosystems Engineering, 12 (1995), 269. 
[27] 
G. Roux, B. Dahhou and I. Queinnec, Adaptive nonlinear control of a continuous stirred tank bioreactor,, Journal of Process Control, 4 (1994), 121. 
[28] 
A. Saddoud, T. Sari, A. Rapaport, R. Lortie, J. Harmand and E. Dubreucq, A mathematical study of an enzymatic hydrolysis of a cellulosic substrate in non homogeneous reactors,, Proceedings of the IFAC Computer Applications in Biotechnology Conference (CAB 2010), (2010), 7. 
[29] 
A. Scheel and E. Van Vleck, Lattice differential equations embedded into reactiondiffusion systems,, Proceedings of the Royal Society Edinburgh Section A, 139 (2009), 193. 
[30] 
H. Smith and P. Waltman, "The Theory of Chemostat. Dynamics of Microbial Competition,'', Cambridge Studies in Mathematical Biology, 13 (1995). doi: 10.1017/CBO9780511530043. 
[31] 
G. Stephanopoulos and A. Fredrickson, Effect of inhomogeneities on the coexistence of competing microbial populations,, Biotechnology and Bioengineering, 21 (1979), 1491. 
[32] 
R. Schwartz, A. Juo and K. McInnes, Estimating parameters for a dualporosity model to describe nonequilibrium, reactive transport in a finetextured soil,, Journal of Hydrology, 229 (2000), 149. 
[33] 
C. Tsakiroglou and M. Ioannidis, Dualporosity modelling of the pore structure and transport properties of a contaminated soil,, European Journal of Soil Science, 59 (2008), 744. 
[34] 
F. ValdesParada, J. AlvarezRamirez and A. OchoaTapia, An approximate solution for a transient twophase stirred tank bioreactor with nonlinear kinetics,, Biotechnology Progress, 21 (2005), 1420. 
[35] 
K. Van't Riet and J. Tramper, "Basic Bioreactor Design,'', Marcel Dekker, (1991). 
show all references
References:
[1] 
C. de Gooijer, W. Bakker, H. Beeftink and J. Tramper, Bioreactors in series: An overview of design procedures and practical applications,, Enzyme and Microbial Technology, 18 (1996), 202. 
[2] 
C. de Gooijer, H. Beeftink and J. Tramper, Optimal design of a series of continuous stirred tank reactors containing immobilised growing cells,, Biotechnology Letters, 18 (1996), 397. 
[3] 
P. Doran, Design of mixing systems for plant cell suspensions in stirred reactors,, Biotechnology Progress, 15 (1999), 319. 
[4] 
A. Dramé, J. Harmand, A. Rapaport and C. Lobry, Multiple steady state profiles in interconnected biological systems,, Mathematical and Computer Modelling of Dynamical Systems, 12 (2006), 379. 
[5] 
A. Dramé, C. Lobry, J. Harmand, A. Rapaport and F. Mazenc, Multiple stable equilibrium profiles in tubular bioreactors,, Mathematical and Computer Modelling, 48 (2008), 1840. 
[6] 
S. Foger, "Elements of Chemical Reaction Engineering,", 4^{th} edition, (2008). 
[7] 
A. Grobicki and D. Stuckey, Hydrodynamic characteristics of the anaerobic baffled reactor,, Water Research, 26 (1992), 371. 
[8] 
L. Grady, G. Daigger and H. Lim, "Biological Wastewater Treatment,'' 3^{nd} edition,, Environmental Science and Pollution Control Series, (1999). 
[9] 
D. Gravel, F. Guichard, M. Loreau and N. Mouquet, Source and sink dynamics in metaecosystems,, Ecology, 91 (2010), 2172. 
[10] 
I. Hanski, "Metapopulation Ecology,'', Oxford University Press, (1999). 
[11] 
J. Harmand, A. Rapaport and A. Trofino, Optimal design of two interconnected bioreactorssome new results,, American Institute of Chemical Engineering Journal, 49 (1999), 1433. 
[12] 
J. Harmand, A. Rapaport and A. Dramé, Optimal design of two interconnected enzymatic reactors,, Journal of Process Control, 14 (2004), 785. 
[13] 
J. Harmand and D. Dochain, Towards a unified approach for the design of interconnected catalytic and autocatalytic reactors,, Computers and Chemical Engineering, 30 (2005), 70. 
[14] 
G. Hill and C. Robinson, Minimum tank volumes for CFST bioreactors in series,, The Canadian Journal of Chemical Engineering, 67 (1989), 818. 
[15] 
W. Hu, K. Wlashchin, M. Betenbaugh, F. Wurm, G. Seth and W. Zhou, "Cellular Bioprocess Technology, Fundamentals and Frontier,'', Lectures Notes, (2007). 
[16] 
O. Levenspiel, "Chemical Reaction Engineering,'', 3^{nd} edition, (1999). 
[17] 
R. Lovitt and J. Wimpenny, The gradostat: A bidirectional compound chemostat and its applications in microbial research,, Journal of General Microbiology, 127 (1981), 261. 
[18] 
K. Luyben and J. Tramper, Optimal design for continuously stirred tank reactors in series using MichaelisMenten kinetics,, Biotechnology and Bioengineering, 24 (1982), 1217. 
[19] 
R. MacArthur and E. Wilson, "The Theory of Island Biogeography,'', Princeton University Press, (1967). 
[20] 
K. Mischaikow, H. Smith and H. Thieme, Asymptotically autonomous semiflows: Chain recurrence and Lyapunov functions,, Transactions of the American Mathematical Society, 347 (1995), 1669. doi: 10.2307/2154964. 
[21] 
J. Monod, La technique de la culture continue: Théorie et applications,, Annales de l'Institut Pasteur, 79 (1950), 390. 
[22] 
S. Nakaoka and Y. Takeuchi, Competition in chemostattype equations with two habitats,, Mathematical Bioscience, 201 (2006), 157. 
[23] 
M. Nelson and H. Sidhu, Evaluating the performance of a cascade of two bioreactors,, Chemical Engineering Science, 61 (2006), 3159. 
[24] 
A. Novick and L. Szilard, Description of the chemostat,, Science, 112 (1950), 715. 
[25] 
A. Rapaport, J. Harmand and F. Mazenc, Coexistence in the design of a series of two chemostats,, Nonlinear Analysis, 9 (2008), 1052. 
[26] 
E. Roca, C. Ghommidh, J.M. Navarro and J.M. Lema, Hydraulic model of a gaslift bioreactor with flocculating yeast,, Bioprocess and Biosystems Engineering, 12 (1995), 269. 
[27] 
G. Roux, B. Dahhou and I. Queinnec, Adaptive nonlinear control of a continuous stirred tank bioreactor,, Journal of Process Control, 4 (1994), 121. 
[28] 
A. Saddoud, T. Sari, A. Rapaport, R. Lortie, J. Harmand and E. Dubreucq, A mathematical study of an enzymatic hydrolysis of a cellulosic substrate in non homogeneous reactors,, Proceedings of the IFAC Computer Applications in Biotechnology Conference (CAB 2010), (2010), 7. 
[29] 
A. Scheel and E. Van Vleck, Lattice differential equations embedded into reactiondiffusion systems,, Proceedings of the Royal Society Edinburgh Section A, 139 (2009), 193. 
[30] 
H. Smith and P. Waltman, "The Theory of Chemostat. Dynamics of Microbial Competition,'', Cambridge Studies in Mathematical Biology, 13 (1995). doi: 10.1017/CBO9780511530043. 
[31] 
G. Stephanopoulos and A. Fredrickson, Effect of inhomogeneities on the coexistence of competing microbial populations,, Biotechnology and Bioengineering, 21 (1979), 1491. 
[32] 
R. Schwartz, A. Juo and K. McInnes, Estimating parameters for a dualporosity model to describe nonequilibrium, reactive transport in a finetextured soil,, Journal of Hydrology, 229 (2000), 149. 
[33] 
C. Tsakiroglou and M. Ioannidis, Dualporosity modelling of the pore structure and transport properties of a contaminated soil,, European Journal of Soil Science, 59 (2008), 744. 
[34] 
F. ValdesParada, J. AlvarezRamirez and A. OchoaTapia, An approximate solution for a transient twophase stirred tank bioreactor with nonlinear kinetics,, Biotechnology Progress, 21 (2005), 1420. 
[35] 
K. Van't Riet and J. Tramper, "Basic Bioreactor Design,'', Marcel Dekker, (1991). 
[1] 
Zhiqi Lu. Global stability for a chemostattype model with delayed nutrient recycling. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 663670. doi: 10.3934/dcdsb.2004.4.663 
[2] 
Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 18511872. doi: 10.3934/dcdsb.2018098 
[3] 
Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reactionconvectiondiffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559579. doi: 10.3934/mbe.2017033 
[4] 
Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 721727. doi: 10.3934/dcdsb.2004.4.721 
[5] 
Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319338. doi: 10.3934/mbe.2007.4.319 
[6] 
Jianquan Li, Zuren Feng, Juan Zhang, Jie Lou. A competition model of the chemostat with an external inhibitor. Mathematical Biosciences & Engineering, 2006, 3 (1) : 111123. doi: 10.3934/mbe.2006.3.111 
[7] 
Jianxin Yang, Zhipeng Qiu, XueZhi Li. Global stability of an agestructured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641665. doi: 10.3934/mbe.2014.11.641 
[8] 
Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 11191128. doi: 10.3934/proc.2011.2011.1119 
[9] 
Attila Dénes, Yoshiaki Muroya, Gergely Röst. Global stability of a multistrain SIS model with superinfection. Mathematical Biosciences & Engineering, 2017, 14 (2) : 421435. doi: 10.3934/mbe.2017026 
[10] 
Bin Fang, XueZhi Li, Maia Martcheva, LiMing Cai. Global stability for a heroin model with two distributed delays. Discrete & Continuous Dynamical Systems  B, 2014, 19 (3) : 715733. doi: 10.3934/dcdsb.2014.19.715 
[11] 
Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449469. doi: 10.3934/mbe.2014.11.449 
[12] 
E. Trofimchuk, Sergei Trofimchuk. Global stability in a regulated logistic growth model. Discrete & Continuous Dynamical Systems  B, 2005, 5 (2) : 461468. doi: 10.3934/dcdsb.2005.5.461 
[13] 
Ábel Garab, Veronika Kovács, Tibor Krisztin. Global stability of a price model with multiple delays. Discrete & Continuous Dynamical Systems  A, 2016, 36 (12) : 68556871. doi: 10.3934/dcds.2016098 
[14] 
Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 9951001. doi: 10.3934/mbe.2014.11.995 
[15] 
Moncef Aouadi, Alain Miranville. Quasistability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241263. doi: 10.3934/eect.2015.4.241 
[16] 
E. Cabral Balreira, Saber Elaydi, Rafael Luís. Local stability implies global stability for the planar Ricker competition model. Discrete & Continuous Dynamical Systems  B, 2014, 19 (2) : 323351. doi: 10.3934/dcdsb.2014.19.323 
[17] 
Edoardo Beretta, Fortunata Solimano, Yanbin Tang. Analysis of a chemostat model for bacteria and virulent bacteriophage. Discrete & Continuous Dynamical Systems  B, 2002, 2 (4) : 495520. doi: 10.3934/dcdsb.2002.2.495 
[18] 
SzeBi Hsu, Junping Shi, FengBin Wang. Further studies of a reactiondiffusion system for an unstirred chemostat with internal storage. Discrete & Continuous Dynamical Systems  B, 2014, 19 (10) : 31693189. doi: 10.3934/dcdsb.2014.19.3169 
[19] 
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367376. doi: 10.3934/proc.2009.2009.367 
[20] 
Qingguang Guan, Max Gunzburger. Stability and convergence of timestepping methods for a nonlocal model for diffusion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (5) : 13151335. doi: 10.3934/dcdsb.2015.20.1315 
2017 Impact Factor: 1.23
Tools
Metrics
Other articles
by authors
[Back to Top]