2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999

The Within-Host dynamics of malaria infection with immune response

1. 

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250

3. 

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240

Received  December 2010 Revised  March 2011 Published  August 2011

Malaria infection is one of the most serious global health problems of our time. In this article the blood-stage dynamics of malaria in an infected host are studied by incorporating red blood cells, malaria parasitemia and immune effectors into a mathematical model with nonlinear bounded Michaelis-Menten-Monod functions describing how immune cells interact with infected red blood cells and merozoites. By a theoretical analysis of this model, we show that there exists a threshold value $R_0$, namely the basic reproduction number, for the malaria infection. The malaria-free equilibrium is global asymptotically stable if $R_0<1$. If $R_0>1$, there exist two kinds of infection equilibria: malaria infection equilibrium (without specific immune response) and positive equilibrium (with specific immune response). Conditions on the existence and stability of both infection equilibria are given. Moreover, it has been showed that the model can undergo Hopf bifurcation at the positive equilibrium and exhibit periodic oscillations. Numerical simulations are also provided to demonstrate these theoretical results.
Citation: Yilong Li, Shigui Ruan, Dongmei Xiao. The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences & Engineering, 2011, 8 (4) : 999-1018. doi: 10.3934/mbe.2011.8.999
References:
[1]

P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis,, Dis. Contin. Dynam. Syst. Ser. B, 8 (2007), 1.

[2]

Z. Agur, D. Abiri and L. H. T. van der Ploeg, Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates,, Proc. Natl. Acad. Sci. USA, 86 (1989), 9626.

[3]

R. M. Anderson, Complex dynamic behaviors in the interaction between parasite populations and the host's immune system,, Intl. J. Parasitol., 28 (1998), 551.

[4]

R. M. Anderson, R. M. May and S. Gupta, Non-linear phenomena in host-parasite interactions,, Parasitology, 99 (1989).

[5]

R. Antia, B. R. Levin and R. M. May, Within-host population dynamics and the evolution and maintenance of microparasite virulence,, Am. Nat., 144 (1994), 457.

[6]

A. D. Augustine, B. F. Hall, W. W. Leitner, A. X. Mo, T. M. Wali and A. S. Fauci, NIAID workshop on immunity to malaria: Addressing immunological challenges,, Nature Immunol., 10 (2009), 673.

[7]

C. Chiyaka, W. Garira and S. Dube, Modelling immune response and drug therapy in human malaria infection,, Comput. Math. Meth. Med., 9 (2008), 143.

[8]

C. Coban, K. J. Ishii, T. Horii and S. Akira, Manipulation of host innate immune responses by the malaria parasite,, TRENDS Microbiol., 15 (2007), 271.

[9]

J. A. Deans and Cohen, Immunology of malaria,, Annu. Rev. Microbiol., 37 (1983), 25.

[10]

R. J. De Boer and A. S. Perelson, Towards a general function describing T cell proliferation,, J. Theoret. Biol., 175 (1995), 567.

[11]

Z. Dong and J.-A. Cui, Dynamical model of vivax malaria intermittence attack in vivo,, Intl. J. Biomath., 2 (2009), 507.

[12]

M. F. Good, H. Xu, M. Wykes and C. R. Engwerda, Development and regulation of cell-mediated immune responses to the blood stages of malaria: Implications from vaccine research,, Annu. Rev. Immunol., 23 (2005), 69.

[13]

M. B. Gravenor and A. L. Lloyd, Reply to: Models for the in-host dynamics of malaria revisited: Errors in some basic models lead to large overestimates of growth rates,, Parasitology, 117 (1998), 409.

[14]

M. B. Gravenor, A. L. Lloyd, P. G. Kremsner, M. A. Missinou, M. English, K. Marsh and D. Kwiatkowski, A model for estimating total parasite load in falciparum malaria patients,, J. Theoret. Biol., 217 (2002), 137.

[15]

M. B. Gravenor, M. B. Van Hensbroek and D. Kwiatkowski, Estimating sequestered parasite population dynamics in cerebral malaria,, Proc. Natl. Acad. Sci. USA, 95 (1998), 7620.

[16]

C. Hetzel and R. M. Anderson, The within-host cellular dynamics of bloodstage malaria-theoretical and experimental studies,, Parasitology, 113 (1996), 25.

[17]

M. B. Hoshen, R. Heinrich, W. D. Stein and H. Ginsburg, Mathematical modeling of the within-host dynamics of Plasmodium falciparum,, Parasitology, 121 (2000), 227.

[18]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260.

[19]

T. Kajiwara and T. Sasaki, A note on the stability analysis of pathogen-immune interaction dynamics,, Discret. Contin. Dynam. Syst. Ser. B, 4 (2004), 615.

[20]

D. Kwiatkowsti and M. Nowak, Periodic and chaotic host-parasite interactions in human malaria,, Proc. Natl. Acad. Sci. USA, 88 (1991), 5111.

[21]

J. Langhorne, F. M. Ndungu, A.-M. Sponaas and K. Marsh, Immunity to malaria: More questions than answers,, Nature Immunol., 9 (2008), 725.

[22]

W. Liu, Nonlinear oscillation in models of immune responses to persistent viruses,, Theoret. Pop. Biol., 52 (1997), 224.

[23]

L. Malaguarnera and S. Musumeci, The immune response to Plasmodium falciparum malaria,, Lancet Infect. Dis., 2 (2002), 472.

[24]

G. L. Mandell, J. E. Bennett and R. Dolin, "Principles and Practice of Infectious Diseases,'', Churchill Livingstone, (1995).

[25]

F. E. McKenzie and H. W. Bossert, An integrated model of Plasmodium falciparum dynamics,, J. Theoret. Biol., 232 (2005), 411.

[26]

P. G. McQueen and F. E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections,, Proc. Natl. Acad. Sci. USA, 101 (2004), 9161.

[27]

P. G. McQueen and F. E. McKenzie, Host control of malaria infections: Constrains on immune and erythropoeitic response kinetics,, PLoS Comput. Biol., 4 (2008). doi: 10.1371/journal.pcbi.1000149.

[28]

J. L. Mitchell and T. W. Carr, Oscillations in an intra-host model of plasmodium falciparum malaria due to cross-reactive immune response,, Bull. Math. Biol., 72 (2010), 590.

[29]

L. Molineaux and K. Dietz, Review of intra-host models of malaria,, Parassitologia, 41 (1999), 221.

[30]

A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics,, J. Math. Biol., 51 (2005), 247.

[31]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Nature, 272 (1996), 74.

[32]

S. S. Pilyugin and R. Antia, Modeling immune responses with handling time,, Bull. Math. Biol., 62 (2000), 869.

[33]

S. I. Rapaport, "Introduction to Hematology,'', Lippincott, (1987).

[34]

I. M. Rouzine and F. E. McKenzie, Link between immune response and parasite synchronization in malaria,, Proc. Natl. Acad. Sci. USA, 100 (2003), 3473.

[35]

S. Ruan and G. S. K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay,, J. Math. Anal. Appl., 204 (1996), 786.

[36]

A. Saul, Models for the in-host dynamics of malaria revisited: Errors in some basic models lead to large over-estimates of growth rates,, Parasitology, 117 (1998), 405.

[37]

J. Stark, C. Chan and A. J. T. George, Oscillations in immune system,, Immunol. Rev., 216 (2007), 213.

[38]

M. M. Stevenson and E. M. Riley, Innate immunity to malaria,, Nat. Rev. Immunol., 4 (2004), 169.

[39]

Y. Su, S. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection,, J. Math. Biol., 63 (2011), 557. doi: 10.1007/s00285-010-0381-5.

[40]

J. Tumwiine, J. Y. T. Mugisha and L. S. Luboobi, On global stability of the intra-host dynamics of malaria and the immune system,, J. Math. Anal. Appl., 341 (2008), 855.

[41]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.

[42]

, WHO, "Malaria,", 2008. Available from: \url{http://www.who.int/malaria/en}., (2008).

[43]

D. Xiao and H. W. Bossert, An intra-host mathematical model on interaction between HIV and malaria,, Bull. Math. Biol., 72 (2010), 1892. doi: p10.1007/s11538-010-9515-6.

show all references

References:
[1]

P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis,, Dis. Contin. Dynam. Syst. Ser. B, 8 (2007), 1.

[2]

Z. Agur, D. Abiri and L. H. T. van der Ploeg, Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates,, Proc. Natl. Acad. Sci. USA, 86 (1989), 9626.

[3]

R. M. Anderson, Complex dynamic behaviors in the interaction between parasite populations and the host's immune system,, Intl. J. Parasitol., 28 (1998), 551.

[4]

R. M. Anderson, R. M. May and S. Gupta, Non-linear phenomena in host-parasite interactions,, Parasitology, 99 (1989).

[5]

R. Antia, B. R. Levin and R. M. May, Within-host population dynamics and the evolution and maintenance of microparasite virulence,, Am. Nat., 144 (1994), 457.

[6]

A. D. Augustine, B. F. Hall, W. W. Leitner, A. X. Mo, T. M. Wali and A. S. Fauci, NIAID workshop on immunity to malaria: Addressing immunological challenges,, Nature Immunol., 10 (2009), 673.

[7]

C. Chiyaka, W. Garira and S. Dube, Modelling immune response and drug therapy in human malaria infection,, Comput. Math. Meth. Med., 9 (2008), 143.

[8]

C. Coban, K. J. Ishii, T. Horii and S. Akira, Manipulation of host innate immune responses by the malaria parasite,, TRENDS Microbiol., 15 (2007), 271.

[9]

J. A. Deans and Cohen, Immunology of malaria,, Annu. Rev. Microbiol., 37 (1983), 25.

[10]

R. J. De Boer and A. S. Perelson, Towards a general function describing T cell proliferation,, J. Theoret. Biol., 175 (1995), 567.

[11]

Z. Dong and J.-A. Cui, Dynamical model of vivax malaria intermittence attack in vivo,, Intl. J. Biomath., 2 (2009), 507.

[12]

M. F. Good, H. Xu, M. Wykes and C. R. Engwerda, Development and regulation of cell-mediated immune responses to the blood stages of malaria: Implications from vaccine research,, Annu. Rev. Immunol., 23 (2005), 69.

[13]

M. B. Gravenor and A. L. Lloyd, Reply to: Models for the in-host dynamics of malaria revisited: Errors in some basic models lead to large overestimates of growth rates,, Parasitology, 117 (1998), 409.

[14]

M. B. Gravenor, A. L. Lloyd, P. G. Kremsner, M. A. Missinou, M. English, K. Marsh and D. Kwiatkowski, A model for estimating total parasite load in falciparum malaria patients,, J. Theoret. Biol., 217 (2002), 137.

[15]

M. B. Gravenor, M. B. Van Hensbroek and D. Kwiatkowski, Estimating sequestered parasite population dynamics in cerebral malaria,, Proc. Natl. Acad. Sci. USA, 95 (1998), 7620.

[16]

C. Hetzel and R. M. Anderson, The within-host cellular dynamics of bloodstage malaria-theoretical and experimental studies,, Parasitology, 113 (1996), 25.

[17]

M. B. Hoshen, R. Heinrich, W. D. Stein and H. Ginsburg, Mathematical modeling of the within-host dynamics of Plasmodium falciparum,, Parasitology, 121 (2000), 227.

[18]

A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost models with a competitive exclusion principle,, SIAM J. Appl. Math., 67 (2006), 260.

[19]

T. Kajiwara and T. Sasaki, A note on the stability analysis of pathogen-immune interaction dynamics,, Discret. Contin. Dynam. Syst. Ser. B, 4 (2004), 615.

[20]

D. Kwiatkowsti and M. Nowak, Periodic and chaotic host-parasite interactions in human malaria,, Proc. Natl. Acad. Sci. USA, 88 (1991), 5111.

[21]

J. Langhorne, F. M. Ndungu, A.-M. Sponaas and K. Marsh, Immunity to malaria: More questions than answers,, Nature Immunol., 9 (2008), 725.

[22]

W. Liu, Nonlinear oscillation in models of immune responses to persistent viruses,, Theoret. Pop. Biol., 52 (1997), 224.

[23]

L. Malaguarnera and S. Musumeci, The immune response to Plasmodium falciparum malaria,, Lancet Infect. Dis., 2 (2002), 472.

[24]

G. L. Mandell, J. E. Bennett and R. Dolin, "Principles and Practice of Infectious Diseases,'', Churchill Livingstone, (1995).

[25]

F. E. McKenzie and H. W. Bossert, An integrated model of Plasmodium falciparum dynamics,, J. Theoret. Biol., 232 (2005), 411.

[26]

P. G. McQueen and F. E. McKenzie, Age-structured red blood cell susceptibility and the dynamics of malaria infections,, Proc. Natl. Acad. Sci. USA, 101 (2004), 9161.

[27]

P. G. McQueen and F. E. McKenzie, Host control of malaria infections: Constrains on immune and erythropoeitic response kinetics,, PLoS Comput. Biol., 4 (2008). doi: 10.1371/journal.pcbi.1000149.

[28]

J. L. Mitchell and T. W. Carr, Oscillations in an intra-host model of plasmodium falciparum malaria due to cross-reactive immune response,, Bull. Math. Biol., 72 (2010), 590.

[29]

L. Molineaux and K. Dietz, Review of intra-host models of malaria,, Parassitologia, 41 (1999), 221.

[30]

A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction dynamics,, J. Math. Biol., 51 (2005), 247.

[31]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses,, Nature, 272 (1996), 74.

[32]

S. S. Pilyugin and R. Antia, Modeling immune responses with handling time,, Bull. Math. Biol., 62 (2000), 869.

[33]

S. I. Rapaport, "Introduction to Hematology,'', Lippincott, (1987).

[34]

I. M. Rouzine and F. E. McKenzie, Link between immune response and parasite synchronization in malaria,, Proc. Natl. Acad. Sci. USA, 100 (2003), 3473.

[35]

S. Ruan and G. S. K. Wolkowicz, Bifurcation analysis of a chemostat model with a distributed delay,, J. Math. Anal. Appl., 204 (1996), 786.

[36]

A. Saul, Models for the in-host dynamics of malaria revisited: Errors in some basic models lead to large over-estimates of growth rates,, Parasitology, 117 (1998), 405.

[37]

J. Stark, C. Chan and A. J. T. George, Oscillations in immune system,, Immunol. Rev., 216 (2007), 213.

[38]

M. M. Stevenson and E. M. Riley, Innate immunity to malaria,, Nat. Rev. Immunol., 4 (2004), 169.

[39]

Y. Su, S. Ruan and J. Wei, Periodicity and synchronization in blood-stage malaria infection,, J. Math. Biol., 63 (2011), 557. doi: 10.1007/s00285-010-0381-5.

[40]

J. Tumwiine, J. Y. T. Mugisha and L. S. Luboobi, On global stability of the intra-host dynamics of malaria and the immune system,, J. Math. Anal. Appl., 341 (2008), 855.

[41]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.

[42]

, WHO, "Malaria,", 2008. Available from: \url{http://www.who.int/malaria/en}., (2008).

[43]

D. Xiao and H. W. Bossert, An intra-host mathematical model on interaction between HIV and malaria,, Bull. Math. Biol., 72 (2010), 1892. doi: p10.1007/s11538-010-9515-6.

[1]

Adam Sullivan, Folashade Agusto, Sharon Bewick, Chunlei Su, Suzanne Lenhart, Xiaopeng Zhao. A mathematical model for within-host Toxoplasma gondii invasion dynamics. Mathematical Biosciences & Engineering, 2012, 9 (3) : 647-662. doi: 10.3934/mbe.2012.9.647

[2]

Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

[3]

Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915-935. doi: 10.3934/mbe.2012.9.915

[4]

Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333

[5]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[6]

Chang Gong, Jennifer J. Linderman, Denise Kirschner. A population model capturing dynamics of tuberculosis granulomas predicts host infection outcomes. Mathematical Biosciences & Engineering, 2015, 12 (3) : 625-642. doi: 10.3934/mbe.2015.12.625

[7]

Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

[8]

Andrei Korobeinikov, Conor Dempsey. A continuous phenotype space model of RNA virus evolution within a host. Mathematical Biosciences & Engineering, 2014, 11 (4) : 919-927. doi: 10.3934/mbe.2014.11.919

[9]

Expeditho Mtisi, Herieth Rwezaura, Jean Michel Tchuenche. A mathematical analysis of malaria and tuberculosis co-dynamics. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 827-864. doi: 10.3934/dcdsb.2009.12.827

[10]

Kazeem Oare Okosun, Robert Smith?. Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences & Engineering, 2017, 14 (2) : 377-405. doi: 10.3934/mbe.2017024

[11]

Tzy-Wei Hwang, Yang Kuang. Host Extinction Dynamics in a Simple Parasite-Host Interaction Model. Mathematical Biosciences & Engineering, 2005, 2 (4) : 743-751. doi: 10.3934/mbe.2005.2.743

[12]

Stephen Pankavich, Deborah Shutt. An in-host model of HIV incorporating latent infection and viral mutation. Conference Publications, 2015, 2015 (special) : 913-922. doi: 10.3934/proc.2015.0913

[13]

Lizhong Qiang, Bin-Guo Wang. An almost periodic malaria transmission model with time-delayed input of vector. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1525-1546. doi: 10.3934/dcdsb.2017073

[14]

Shangbing Ai. Multiple positive periodic solutions for a delay host macroparasite model. Communications on Pure & Applied Analysis, 2004, 3 (2) : 175-182. doi: 10.3934/cpaa.2004.3.175

[15]

Yanxia Dang, Zhipeng Qiu, Xuezhi Li. Competitive exclusion in an infection-age structured vector-host epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (4) : 901-931. doi: 10.3934/mbe.2017048

[16]

Fred Brauer, Zhisheng Shuai, P. van den Driessche. Dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1335-1349. doi: 10.3934/mbe.2013.10.1335

[17]

Jinliang Wang, Ran Zhang, Toshikazu Kuniya. A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences & Engineering, 2016, 13 (1) : 227-247. doi: 10.3934/mbe.2016.13.227

[18]

Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2019030

[19]

Yongli Cai, Weiming Wang. Dynamics of a parasite-host epidemiological model in spatial heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 989-1013. doi: 10.3934/dcdsb.2015.20.989

[20]

Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li. A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences & Engineering, 2015, 12 (3) : 431-449. doi: 10.3934/mbe.2015.12.431

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]