2012, 9(1): 1-25. doi: 10.3934/mbe.2012.9.1

Nonlinear stochastic Markov processes and modeling uncertainty in populations

1. 

Center for Research in Scientific Computation, Center for Quantitative Sciences in Biomedicine, Raleigh, NC 27695-8212, United States, United States

Received  January 2011 Revised  July 2011 Published  December 2011

We consider an alternative approach to the use of nonlinear stochastic Markov processes (which have a Fokker-Planck or Forward Kolmogorov representation for density) in modeling uncertainty in populations. These alternate formulations, which involve imposing probabilistic structures on a family of deterministic dynamical systems, are shown to yield pointwise equivalent population densities. Moreover, these alternate formulations lead to fast efficient calculations in inverse problems as well as in forward simulations. Here we derive a class of stochastic formulations for which such an alternate representation is readily found.
Citation: H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1
References:
[1]

G. Albano, V. Giorno, P. Roman-Roman and F. Torres-Ruiz, Inferring the effect of therapy on tumors showing stochastic Gompertzian growth,, Journal of Theoretical Biology, 276 (2011), 67. doi: 10.1016/j.jtbi.2011.01.040.

[2]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,", Second edition, (2011).

[3]

P. Bai, H. T. Banks, S. Dediu, A. Y. Govan, M. Last, A. Loyd, H. K. Nguyen, M. S. Olufsen, G. Rempala and B. D. Slenning, Stochastic and deterministic models for agricultural production networks,, Math. Biosci. and Engr., 4 (2007), 373. doi: 10.3934/mbe.2007.4.373.

[4]

H. T. Banks and K. L. Bihari, Modelling and estimating uncertainty in parameter estimation,, Inverse Problems, 17 (2001), 95. doi: 10.1088/0266-5611/17/1/308.

[5]

H. T. Banks, V. A. Bokil, S. Hu, A. K. Dhar, R. A. Bullis, C. L. Browdy and F. C. T. Allnutt, Modeling shrimp biomass and viral infection for production of biological countermeasures,, Mathematical Biosciences and Engineering, 3 (2006), 635. doi: 10.3934/mbe.2006.3.635.

[6]

H. T. Banks, D. M. Bortz, G. A. Pinter and L. K. Potter, Modeling and imaging techniques with potential for application in bioterrorism,, in, 28 (2003), 129.

[7]

H. T. Banks, L. W. Botsford, F. Kappel and C. Wang, Modeling and estimation in size structured population models,, in, (1988), 521.

[8]

H. T. Banks and J. L. Davis, Quantifying uncertainty in the estimation of probability distributions,, Math. Biosci. Engr., 5 (2008), 647. doi: 10.3934/mbe.2008.5.647.

[9]

H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich, A. K. Dhar and C. L. Browdy, A comparison of probabilistic and stochastic formulations in modeling growth uncertainty and variability,, Journal of Biological Dynamics, 3 (2009), 130. doi: 10.1080/17513750802304877.

[10]

H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich and A. K. Dhar, Experimental design and estimation of growth rate distributions in size-structured shrimp populations,, Inverse Problems, 25 (2009).

[11]

H. T. Banks, J. L. Davis and S. Hu, A computational comparison of alternatives to including uncertainty in structured population models,, in, (2010).

[12]

H. T. Banks and B. G. Fitzpatrick, Estimation of growth rate distributions in size structured population models,, Quarterly of Applied Mathematics, 49 (1991), 215.

[13]

H. T. Banks and S. Hu, "Nonlinear Stochastic Markov Processes and Modeling Uncertainty in Populations,", Center for Research in Scientific Computation, (2011).

[14]

H. T. Banks, B. G. Fitzpatrick, L. K. Potter and Y. Zhang, Estimation of probability distributions for individual parameters using aggregate population data,, in, (1989), 353.

[15]

H. T. Banks, P. M. Kareiva and L. Zia, Analyzing field studies of insect dispersal using two dimensional transport equations,, Environmental Entomology, 17 (1988), 815.

[16]

H. T. Banks, K. L. Rehm and K. L. Sutton, Dynamic social network models incorporating stochasticity and delays,, Quarterly Applied Math., 68 (2010), 783.

[17]

H. T. Banks, K. L. Sutton, W. C. Thompson, G. Bocharov, D. Roose, T. Schenkel and A. Meyerhans, Estimation of cell proliferation dynamics using CFSE data,, Bull. Math. Biol., 73 (2011), 116. doi: 10.1007/s11538-010-9524-5.

[18]

H. T. Banks, K. L. Sutton, W. C. Thompson, G. Bocharov, M. Doumic, T. Schenkel, J. Argilaguet, S. Giest, C. Peligero and A. Meyerhans, A new model for the estimation of cell proliferation dynamics using CFSE data,, J. Immunological Methods, ().

[19]

H. T. Banks and H. T. Tran, "Mathematical and Experimental Modeling of Physical and Biological Processes,", With 1 CD-ROM (Windows, (2009).

[20]

H. T. Banks, H. T. Tran and D. E. Woodward, Estimation of variable coefficients in the Fokker-Planck equations using moving node finite elements,, SIAM J. Numer. Anal., 30 (1993), 1574. doi: 10.1137/0730082.

[21]

G. Casella and R. L. Berger, "Statistical Inference,", The Wadsworth & Brooks/Cole Statistics/Probability Series, (1990).

[22]

S. N. Ethier and T. G. Kurtz, "Markov Processes: Characterization and Convergence,", Wiley Series in Probability and Statistics, (1986).

[23]

L. Ferrante, S. Bompadre, L. Possati and L. Leone, Parameter estimation in a Gompertzian stochastic model for tumor growth,, Biometrics, 56 (2000), 1076. doi: 10.1111/j.0006-341X.2000.01076.x.

[24]

T. C. Gard, "Introduction to Stochastic Differential Equations,", Monographs and Textbooks in Pure and Applied Mathematics, 114 (1988).

[25]

G. W. Harrison, Numerical solution of the Fokker-Planck equation using moving finite elements,, Numerical Methods for Partial Differential Equations, 4 (1988), 219. doi: 10.1002/num.1690040305.

[26]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", Second edition, 113 (1991).

[27]

F. Klebaner, "Introduction to Stochastic Calculus with Applications,", Second edition, (2005).

[28]

T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans and G. Bocharov, Numerical modelling of label-structured cell population growth using CFSE distribution data,, Theoretical Biology and Medical Modelling, 4 (2007), 1. doi: 10.1186/1742-4682-4-26.

[29]

J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations,", Papers from the colloquium held in Amsterdam, 68 (1983).

[30]

S. Michelson, K. Ito, H. T. Tran and J. T. Leith, Stochastic models for subpopulation emergence in heterogeneous tumors,, Bulletin of Mathematical Biology, 51 (1989), 731.

[31]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models,", An extended version of the Japanese edition, 10 (1980).

[32]

J. Sinko and W. Streifer, A new model for age-size structure of a population,, Ecology, 48 (1967), 910. doi: 10.2307/1934533.

[33]

T. T. Soong, "Random Differential Equations in Science and Engineering,", Mathematics in Science and Engineering, (1973).

show all references

References:
[1]

G. Albano, V. Giorno, P. Roman-Roman and F. Torres-Ruiz, Inferring the effect of therapy on tumors showing stochastic Gompertzian growth,, Journal of Theoretical Biology, 276 (2011), 67. doi: 10.1016/j.jtbi.2011.01.040.

[2]

L. J. S. Allen, "An Introduction to Stochastic Processes with Applications to Biology,", Second edition, (2011).

[3]

P. Bai, H. T. Banks, S. Dediu, A. Y. Govan, M. Last, A. Loyd, H. K. Nguyen, M. S. Olufsen, G. Rempala and B. D. Slenning, Stochastic and deterministic models for agricultural production networks,, Math. Biosci. and Engr., 4 (2007), 373. doi: 10.3934/mbe.2007.4.373.

[4]

H. T. Banks and K. L. Bihari, Modelling and estimating uncertainty in parameter estimation,, Inverse Problems, 17 (2001), 95. doi: 10.1088/0266-5611/17/1/308.

[5]

H. T. Banks, V. A. Bokil, S. Hu, A. K. Dhar, R. A. Bullis, C. L. Browdy and F. C. T. Allnutt, Modeling shrimp biomass and viral infection for production of biological countermeasures,, Mathematical Biosciences and Engineering, 3 (2006), 635. doi: 10.3934/mbe.2006.3.635.

[6]

H. T. Banks, D. M. Bortz, G. A. Pinter and L. K. Potter, Modeling and imaging techniques with potential for application in bioterrorism,, in, 28 (2003), 129.

[7]

H. T. Banks, L. W. Botsford, F. Kappel and C. Wang, Modeling and estimation in size structured population models,, in, (1988), 521.

[8]

H. T. Banks and J. L. Davis, Quantifying uncertainty in the estimation of probability distributions,, Math. Biosci. Engr., 5 (2008), 647. doi: 10.3934/mbe.2008.5.647.

[9]

H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich, A. K. Dhar and C. L. Browdy, A comparison of probabilistic and stochastic formulations in modeling growth uncertainty and variability,, Journal of Biological Dynamics, 3 (2009), 130. doi: 10.1080/17513750802304877.

[10]

H. T. Banks, J. L. Davis, S. L. Ernstberger, S. Hu, E. Artimovich and A. K. Dhar, Experimental design and estimation of growth rate distributions in size-structured shrimp populations,, Inverse Problems, 25 (2009).

[11]

H. T. Banks, J. L. Davis and S. Hu, A computational comparison of alternatives to including uncertainty in structured population models,, in, (2010).

[12]

H. T. Banks and B. G. Fitzpatrick, Estimation of growth rate distributions in size structured population models,, Quarterly of Applied Mathematics, 49 (1991), 215.

[13]

H. T. Banks and S. Hu, "Nonlinear Stochastic Markov Processes and Modeling Uncertainty in Populations,", Center for Research in Scientific Computation, (2011).

[14]

H. T. Banks, B. G. Fitzpatrick, L. K. Potter and Y. Zhang, Estimation of probability distributions for individual parameters using aggregate population data,, in, (1989), 353.

[15]

H. T. Banks, P. M. Kareiva and L. Zia, Analyzing field studies of insect dispersal using two dimensional transport equations,, Environmental Entomology, 17 (1988), 815.

[16]

H. T. Banks, K. L. Rehm and K. L. Sutton, Dynamic social network models incorporating stochasticity and delays,, Quarterly Applied Math., 68 (2010), 783.

[17]

H. T. Banks, K. L. Sutton, W. C. Thompson, G. Bocharov, D. Roose, T. Schenkel and A. Meyerhans, Estimation of cell proliferation dynamics using CFSE data,, Bull. Math. Biol., 73 (2011), 116. doi: 10.1007/s11538-010-9524-5.

[18]

H. T. Banks, K. L. Sutton, W. C. Thompson, G. Bocharov, M. Doumic, T. Schenkel, J. Argilaguet, S. Giest, C. Peligero and A. Meyerhans, A new model for the estimation of cell proliferation dynamics using CFSE data,, J. Immunological Methods, ().

[19]

H. T. Banks and H. T. Tran, "Mathematical and Experimental Modeling of Physical and Biological Processes,", With 1 CD-ROM (Windows, (2009).

[20]

H. T. Banks, H. T. Tran and D. E. Woodward, Estimation of variable coefficients in the Fokker-Planck equations using moving node finite elements,, SIAM J. Numer. Anal., 30 (1993), 1574. doi: 10.1137/0730082.

[21]

G. Casella and R. L. Berger, "Statistical Inference,", The Wadsworth & Brooks/Cole Statistics/Probability Series, (1990).

[22]

S. N. Ethier and T. G. Kurtz, "Markov Processes: Characterization and Convergence,", Wiley Series in Probability and Statistics, (1986).

[23]

L. Ferrante, S. Bompadre, L. Possati and L. Leone, Parameter estimation in a Gompertzian stochastic model for tumor growth,, Biometrics, 56 (2000), 1076. doi: 10.1111/j.0006-341X.2000.01076.x.

[24]

T. C. Gard, "Introduction to Stochastic Differential Equations,", Monographs and Textbooks in Pure and Applied Mathematics, 114 (1988).

[25]

G. W. Harrison, Numerical solution of the Fokker-Planck equation using moving finite elements,, Numerical Methods for Partial Differential Equations, 4 (1988), 219. doi: 10.1002/num.1690040305.

[26]

I. Karatzas and S. E. Shreve, "Brownian Motion and Stochastic Calculus,", Second edition, 113 (1991).

[27]

F. Klebaner, "Introduction to Stochastic Calculus with Applications,", Second edition, (2005).

[28]

T. Luzyanina, D. Roose, T. Schenkel, M. Sester, S. Ehl, A. Meyerhans and G. Bocharov, Numerical modelling of label-structured cell population growth using CFSE distribution data,, Theoretical Biology and Medical Modelling, 4 (2007), 1. doi: 10.1186/1742-4682-4-26.

[29]

J. A. J. Metz and O. Diekmann, eds., "The Dynamics of Physiologically Structured Populations,", Papers from the colloquium held in Amsterdam, 68 (1983).

[30]

S. Michelson, K. Ito, H. T. Tran and J. T. Leith, Stochastic models for subpopulation emergence in heterogeneous tumors,, Bulletin of Mathematical Biology, 51 (1989), 731.

[31]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models,", An extended version of the Japanese edition, 10 (1980).

[32]

J. Sinko and W. Streifer, A new model for age-size structure of a population,, Ecology, 48 (1967), 910. doi: 10.2307/1934533.

[33]

T. T. Soong, "Random Differential Equations in Science and Engineering,", Mathematics in Science and Engineering, (1973).

[1]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure & Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[2]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic & Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[3]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[4]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic & Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[5]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[6]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic & Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[7]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[8]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks & Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[9]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic & Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[10]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic & Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[11]

Vladimir I. Bogachev, Stanislav V. Shaposhnikov, Alexander Yu. Veretennikov. Differentiability of solutions of stationary Fokker--Planck--Kolmogorov equations with respect to a parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3519-3543. doi: 10.3934/dcds.2016.36.3519

[12]

John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371

[13]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[14]

Andrea Bonfiglioli, Ermanno Lanconelli. Lie groups related to Hörmander operators and Kolmogorov-Fokker-Planck equations. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1587-1614. doi: 10.3934/cpaa.2012.11.1587

[15]

Yanqing Liu, Yanyan Yin, Kok Lay Teo, Song Wang, Fei Liu. Probabilistic control of Markov jump systems by scenario optimization approach. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-7. doi: 10.3934/jimo.2018103

[16]

Florian Schneider, Andreas Roth, Jochen Kall. First-order quarter-and mixed-moment realizability theory and Kershaw closures for a Fokker-Planck equation in two space dimensions. Kinetic & Related Models, 2017, 10 (4) : 1127-1161. doi: 10.3934/krm.2017044

[17]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[18]

Peter Constantin, Gregory Seregin. Global regularity of solutions of coupled Navier-Stokes equations and nonlinear Fokker Planck equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1185-1196. doi: 10.3934/dcds.2010.26.1185

[19]

Axel Klar, Florian Schneider, Oliver Tse. Approximate models for stochastic dynamic systems with velocities on the sphere and associated Fokker--Planck equations. Kinetic & Related Models, 2014, 7 (3) : 509-529. doi: 10.3934/krm.2014.7.509

[20]

Oliver Knill. A deterministic displacement theorem for Poisson processes. Electronic Research Announcements, 1997, 3: 110-113.

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (1)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]