• Previous Article
    Impact of discontinuous treatments on disease dynamics in an SIR epidemic model
  • MBE Home
  • This Issue
  • Next Article
    A statistical approach to the use of control entropy identifies differences in constraints of gait in highly trained versus untrained runners
2012, 9(1): 111-122. doi: 10.3934/mbe.2012.9.111

Threshold dynamics for a Tuberculosis model with seasonality

1. 

Department of Applied Mathematics, Xi’an Jiaotong University, Xi’an, 710049

Received  February 2011 Revised  March 2011 Published  December 2011

In this paper, we investigate a SEILR tuberculosis model incorporating the effect of seasonal fluctuation, where the loss of sight class is considered. The basic reproduction number $R_{0}$ is defined. It is shown that the disease-free equilibrium is globally asymptotically stable and the disease eventually disappears if $R_{0}<1$, and there exists at least one positive periodic solution and the disease is uniformly persistent if $R_{0}>1$. Numerical simulations are provided to illustrate analytical results.
Citation: Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111
References:
[1]

D. Bleed, C. Watt and C. Dye, World health report 2001: Global tuberculosis control, Technical report, World Health Organization, WHO/CDS/TB/2001.287., Available from: \url{http://whqlibdoc.who.int/hq/2001/WHO_CDS_TB_2001.287.pdf}., 2001 ().

[2]

S. M. Blower, The intrinsic transmission dynamics of tuberculosis epidemics,, Nature Medicine, 1 (1995), 815. doi: 10.1038/nm0895-815.

[3]

Samuel Bowong and Jean Jules Tewa, Mathematical analysis of a tuberculosis model with differential infectivity,, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4010.

[4]

B. Song, C. Castillo-Chavez and J. P. Aparicio, Tuberculosis models with fast and slow dynamics: The role of close and casual contacts,, Mathematical Biosciences, 180 (2002), 187. doi: 10.1016/S0025-5564(02)00112-8.

[5]

C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis,, Journal of Mathematical Analysis and Application, 338 (2008), 518. doi: 10.1016/j.jmaa.2007.05.012.

[6]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression,, Mathematical Biosciences and Engineering, 3 (2006), 603. doi: 10.3934/mbe.2006.3.603.

[7]

Z. Feng, W. Huang and C. Castillo-Chavez, On the role of variable latent periods in mathematical models for tuberculosis,, Journal of Dynamics and Differential Equations, 13 (2001), 425. doi: 10.1023/A:1016688209771.

[8]

S. M. Blower, P. M. Small and P. C. Hopewell, Control strategies for tuberculosis epidemics: New models for old problems,, Science, 273 (1996), 497. doi: 10.1126/science.273.5274.497.

[9]

L. Liu, X.-Q. Zhao and Y. Zhou, A tuberculosis model with seasonality,, Bull. Math. Biol., 72 (2010), 931. doi: 10.1007/s11538-009-9477-8.

[10]

O. Sharomi, C. N. Podder, A. B. Gumel and B. Song, Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment,, Math. Biosci. Eng., 5 (2008), 145. doi: 10.3934/mbe.2008.5.145.

[11]

Y. Zhou, K. Khan, Z. Feng and J. Wu, Projection of tuberculosis incidence with increasing immigration trends,, J. Theor. Biol., 254 (2008), 215. doi: 10.1016/j.jtbi.2008.05.026.

[12]

H. L. Smith, Subharmonic bifurcation in a S-I-R epidemic model,, J. Math. Biol., 17 (1983), 163. doi: 10.1007/BF00305757.

[13]

C. J. Duncan, S. R. Duncan and S. Scott, Oscillatory dynamics of small-pox and the impact of vaccination,, J. Theor. Biol., 183 (1996), 447. doi: 10.1006/jtbi.1996.0234.

[14]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cembridge Studies in Mathematical Biology, 13 (1995).

[15]

H. L. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41,, American Mathematical Society, (1995).

[16]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dynam. Differential Equations, 20 (2008), 699. doi: 10.1007/s10884-008-9111-8.

[17]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6.

[18]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotical autonomous differential equations,, J. Math. Biol., 30 (1992), 755.

[19]

F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496. doi: 10.1016/j.jmaa.2006.01.085.

[20]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003).

show all references

References:
[1]

D. Bleed, C. Watt and C. Dye, World health report 2001: Global tuberculosis control, Technical report, World Health Organization, WHO/CDS/TB/2001.287., Available from: \url{http://whqlibdoc.who.int/hq/2001/WHO_CDS_TB_2001.287.pdf}., 2001 ().

[2]

S. M. Blower, The intrinsic transmission dynamics of tuberculosis epidemics,, Nature Medicine, 1 (1995), 815. doi: 10.1038/nm0895-815.

[3]

Samuel Bowong and Jean Jules Tewa, Mathematical analysis of a tuberculosis model with differential infectivity,, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 4010.

[4]

B. Song, C. Castillo-Chavez and J. P. Aparicio, Tuberculosis models with fast and slow dynamics: The role of close and casual contacts,, Mathematical Biosciences, 180 (2002), 187. doi: 10.1016/S0025-5564(02)00112-8.

[5]

C. C. McCluskey, Global stability for a class of mass action systems allowing for latency in tuberculosis,, Journal of Mathematical Analysis and Application, 338 (2008), 518. doi: 10.1016/j.jmaa.2007.05.012.

[6]

C. C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression,, Mathematical Biosciences and Engineering, 3 (2006), 603. doi: 10.3934/mbe.2006.3.603.

[7]

Z. Feng, W. Huang and C. Castillo-Chavez, On the role of variable latent periods in mathematical models for tuberculosis,, Journal of Dynamics and Differential Equations, 13 (2001), 425. doi: 10.1023/A:1016688209771.

[8]

S. M. Blower, P. M. Small and P. C. Hopewell, Control strategies for tuberculosis epidemics: New models for old problems,, Science, 273 (1996), 497. doi: 10.1126/science.273.5274.497.

[9]

L. Liu, X.-Q. Zhao and Y. Zhou, A tuberculosis model with seasonality,, Bull. Math. Biol., 72 (2010), 931. doi: 10.1007/s11538-009-9477-8.

[10]

O. Sharomi, C. N. Podder, A. B. Gumel and B. Song, Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment,, Math. Biosci. Eng., 5 (2008), 145. doi: 10.3934/mbe.2008.5.145.

[11]

Y. Zhou, K. Khan, Z. Feng and J. Wu, Projection of tuberculosis incidence with increasing immigration trends,, J. Theor. Biol., 254 (2008), 215. doi: 10.1016/j.jtbi.2008.05.026.

[12]

H. L. Smith, Subharmonic bifurcation in a S-I-R epidemic model,, J. Math. Biol., 17 (1983), 163. doi: 10.1007/BF00305757.

[13]

C. J. Duncan, S. R. Duncan and S. Scott, Oscillatory dynamics of small-pox and the impact of vaccination,, J. Theor. Biol., 183 (1996), 447. doi: 10.1006/jtbi.1996.0234.

[14]

H. L. Smith and P. Waltman, "The Theory of the Chemostat. Dynamics of Microbial Competition,", Cembridge Studies in Mathematical Biology, 13 (1995).

[15]

H. L. Smith, "Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems," Mathematical Surveys and Monographs, 41,, American Mathematical Society, (1995).

[16]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments,, J. Dynam. Differential Equations, 20 (2008), 699. doi: 10.1007/s10884-008-9111-8.

[17]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6.

[18]

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotical autonomous differential equations,, J. Math. Biol., 30 (1992), 755.

[19]

F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496. doi: 10.1016/j.jmaa.2006.01.085.

[20]

X.-Q. Zhao, "Dynamical Systems in Population Biology,", CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, 16 (2003).

[1]

Kaifa Wang, Aijun Fan. Uniform persistence and periodic solution of chemostat-type model with antibiotic. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 789-795. doi: 10.3934/dcdsb.2004.4.789

[2]

Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377

[3]

Antoine Perasso. Global stability and uniform persistence for an infection load-structured SI model with exponential growth velocity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 15-32. doi: 10.3934/cpaa.2019002

[4]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[5]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[6]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

[7]

Wen Jin, Horst R. Thieme. Persistence and extinction of diffusing populations with two sexes and short reproductive season. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3209-3218. doi: 10.3934/dcdsb.2014.19.3209

[8]

Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261

[9]

Liang Kong, Tung Nguyen, Wenxian Shen. Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1613-1636. doi: 10.3934/cpaa.2019077

[10]

Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627

[11]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[12]

Christian Lax, Sebastian Walcher. A note on global asymptotic stability of nonautonomous master equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 2143-2149. doi: 10.3934/dcdsb.2013.18.2143

[13]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[14]

Mi-Young Kim. Uniqueness and stability of positive periodic numerical solution of an epidemic model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 365-375. doi: 10.3934/dcdsb.2007.7.365

[15]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[16]

Shiwang Ma, Xiao-Qiang Zhao. Global asymptotic stability of minimal fronts in monostable lattice equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 259-275. doi: 10.3934/dcds.2008.21.259

[17]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[18]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

[19]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[20]

Keng Deng, Yixiang Wu. Extinction and uniform strong persistence of a size-structured population model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 831-840. doi: 10.3934/dcdsb.2017041

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]