# American Institute of Mathematical Sciences

2012, 9(3): 553-576. doi: 10.3934/mbe.2012.9.553

## Parameter estimation and uncertainty quantification for an epidemic model

 1 Center for Quantitative Sciences in Biomedicine and Department of Mathematics, North Carolina State University, Raleigh, NC 27695, and Department of Mathematics & Computer Science, Valparaiso University, 1900 Chapel Drive, Valparaiso, IN 46383, United States 2 Department of Mathematics, University of North Carolina, Chapel Hill, CB #3250, Chapel Hill, NC 27599, United States 3 Program in Applied Mathematics, University of Arizona, 617 N. Santa Rita Ave., PO Box 210089, Tucson, AZ 85721-0089, United States 4 Department of Mathematics, Morehouse College, 830 Westview Drive SW Unit 142133, Atlanta, GA 30314, United States 5 Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States 6 Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh NC, 27695, USA and Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, United States

Received  December 2009 Revised  April 2012 Published  July 2012

We examine estimation of the parameters of Susceptible-Infective-Recovered (SIR) models in the context of least squares. We review the use of asymptotic statistical theory and sensitivity analysis to obtain measures of uncertainty for estimates of the model parameters and the basic reproductive number ($R_0$)---an epidemiologically significant parameter grouping. We find that estimates of different parameters, such as the transmission parameter and recovery rate, are correlated, with the magnitude and sign of this correlation depending on the value of $R_0$. Situations are highlighted in which this correlation allows $R_0$ to be estimated with greater ease than its constituent parameters. Implications of correlation for parameter identifiability are discussed. Uncertainty estimates and sensitivity analysis are used to investigate how the frequency at which data is sampled affects the estimation process and how the accuracy and uncertainty of estimates improves as data is collected over the course of an outbreak. We assess the informativeness of individual data points in a given time series to determine when more frequent sampling (if possible) would prove to be most beneficial to the estimation process. This technique can be used to design data sampling schemes in more general contexts.
Citation: Alex Capaldi, Samuel Behrend, Benjamin Berman, Jason Smith, Justin Wright, Alun L. Lloyd. Parameter estimation and uncertainty quantification for an epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (3) : 553-576. doi: 10.3934/mbe.2012.9.553
##### References:

show all references

##### References:
 [1] Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709 [2] Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465 [3] Krzysztof Fujarewicz, Krzysztof Łakomiec. Parameter estimation of systems with delays via structural sensitivity analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2521-2533. doi: 10.3934/dcdsb.2014.19.2521 [4] Michel Cristofol, Jimmy Garnier, François Hamel, Lionel Roques. Uniqueness from pointwise observations in a multi-parameter inverse problem. Communications on Pure & Applied Analysis, 2012, 11 (1) : 173-188. doi: 10.3934/cpaa.2012.11.173 [5] Jie Chen, Maarten de Hoop. The inverse problem for electroseismic conversion: Stable recovery of the conductivity and the electrokinetic mobility parameter. Inverse Problems & Imaging, 2016, 10 (3) : 641-658. doi: 10.3934/ipi.2016015 [6] B. Cantó, C. Coll, E. Sánchez. The problem of global identifiability for systems with tridiagonal matrices. Conference Publications, 2011, 2011 (Special) : 250-257. doi: 10.3934/proc.2011.2011.250 [7] Valery Y. Glizer, Vladimir Turetsky, Emil Bashkansky. Statistical process control optimization with variable sampling interval and nonlinear expected loss. Journal of Industrial & Management Optimization, 2015, 11 (1) : 105-133. doi: 10.3934/jimo.2015.11.105 [8] Toshiyuki Suzuki. Scattering theory for semilinear Schrödinger equations with an inverse-square potential via energy methods. Evolution Equations & Control Theory, 2019, 8 (2) : 447-471. doi: 10.3934/eect.2019022 [9] S. Yu. Pilyugin. Inverse shadowing by continuous methods. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 29-38. doi: 10.3934/dcds.2002.8.29 [10] Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic & Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042 [11] Lorenzo Audibert. The Generalized Linear Sampling and factorization methods only depends on the sign of contrast on the boundary. Inverse Problems & Imaging, 2017, 11 (6) : 1107-1119. doi: 10.3934/ipi.2017051 [12] Earl Berkson. Fourier analysis methods in operator ergodic theory on super-reflexive Banach spaces. Electronic Research Announcements, 2010, 17: 90-103. doi: 10.3934/era.2010.17.90 [13] Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757 [14] Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127 [15] Cristian A. Coclici, Jörg Heiermann, Gh. Moroşanu, W. L. Wendland. Asymptotic analysis of a two--dimensional coupled problem for compressible viscous flows. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 137-163. doi: 10.3934/dcds.2004.10.137 [16] Qiang Du, Jingyan Zhang. Asymptotic analysis of a diffuse interface relaxation to a nonlocal optimal partition problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1443-1461. doi: 10.3934/dcds.2011.29.1443 [17] Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048 [18] Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems & Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567 [19] Yuhong Dai, Ya-xiang Yuan. Analysis of monotone gradient methods. Journal of Industrial & Management Optimization, 2005, 1 (2) : 181-192. doi: 10.3934/jimo.2005.1.181 [20] Florian Méhats, Olivier Pinaud. A problem of moment realizability in quantum statistical physics. Kinetic & Related Models, 2011, 4 (4) : 1143-1158. doi: 10.3934/krm.2011.4.1143

2018 Impact Factor: 1.313