# American Institute of Mathematical Sciences

2013, 10(5&6): 1691-1701. doi: 10.3934/mbe.2013.10.1691

## Optimal isolation strategies of emerging infectious diseases with limited resources

 1 School of Mathematics and Statistics, Central South University, Changsha, Hunan 410083, China 2 Centre for Disease Modeling, York University, 4700 Keele Street, Toronto, ON M3J1P3 3 School of Information Science and Engineering, Central South University, Changsha, Hunan 410083, China

Received  September 2012 Revised  May 2013 Published  August 2013

A classical deterministic SIR model is modified to take into account of limited resources for diagnostic confirmation/medical isolation. We show that this modification leads to four different scenarios (instead of three scenarios in comparison with the SIR model) for optimal isolation strategies, and obtain analytic solutions for the optimal control problem that minimize the outbreak size under the assumption of limited resources for isolation. These solutions and their corresponding optimal control policies are derived explicitly in terms of initial conditions, model parameters and resources for isolation (such as the number of intensive care units). With sufficient resources, the optimal control strategy is the normal Bang-Bang control. However, with limited resources the optimal control strategy requires to switch to time-variant isolation at an optimal rate proportional to the ratio of isolated cases over the entire infected population once the maximum capacity is reached.
Citation: Yinggao Zhou, Jianhong Wu, Min Wu. Optimal isolation strategies of emerging infectious diseases with limited resources. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1691-1701. doi: 10.3934/mbe.2013.10.1691
##### References:

show all references

##### References:
 [1] Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial & Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63 [2] Mohammad A. Safi, Abba B. Gumel. Global asymptotic dynamics of a model for quarantine and isolation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 209-231. doi: 10.3934/dcdsb.2010.14.209 [3] Urszula Ledzewicz, Heinz Schättler. On optimal singular controls for a general SIR-model with vaccination and treatment. Conference Publications, 2011, 2011 (Special) : 981-990. doi: 10.3934/proc.2011.2011.981 [4] Semu Mitiku Kassa. Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Mathematical Biosciences & Engineering, 2018, 15 (1) : 255-273. doi: 10.3934/mbe.2018011 [5] Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030 [6] Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021 [7] Enrique Fernández-Cara, Juan Límaco, Laurent Prouvée. Optimal control of a two-equation model of radiotherapy. Mathematical Control & Related Fields, 2018, 8 (1) : 117-133. doi: 10.3934/mcrf.2018005 [8] Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219 [9] Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015 [10] IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054 [11] Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456 [12] Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control & Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493 [13] Erin N. Bodine, Louis J. Gross, Suzanne Lenhart. Optimal control applied to a model for species augmentation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 669-680. doi: 10.3934/mbe.2008.5.669 [14] Aili Wang, Yanni Xiao, Huaiping Zhu. Dynamics of a Filippov epidemic model with limited hospital beds. Mathematical Biosciences & Engineering, 2018, 15 (3) : 739-764. doi: 10.3934/mbe.2018033 [15] Shin-Guang Chen. Optimal double-resource assignment for a distributed multistate network. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1375-1391. doi: 10.3934/jimo.2015.11.1375 [16] Ali Gharouni, Lin Wang. Modeling the spread of bed bug infestation and optimal resource allocation for disinfestation. Mathematical Biosciences & Engineering, 2016, 13 (5) : 969-980. doi: 10.3934/mbe.2016025 [17] Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 [18] Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639 [19] Rong Liu, Feng-Qin Zhang, Yuming Chen. Optimal contraception control for a nonlinear population model with size structure and a separable mortality. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3603-3618. doi: 10.3934/dcdsb.2016112 [20] Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multi-level dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235-257. doi: 10.3934/mcrf.2017008

2018 Impact Factor: 1.313