2013, 10(2): 345-367. doi: 10.3934/mbe.2013.10.345

Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey

1. 

Grupo de Ecología Matemática, Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, Chile, Chile

2. 

Department of Mathematics, The University of South Dakota, Vermillion, SD 57069-2390, United States

Received  October 2011 Revised  August 2012 Published  January 2013

The main purpose of this work is to analyze a Gause type predator-prey model in which two ecological phenomena are considered: the Allee effect affecting the prey growth function and the formation of group defence by prey in order to avoid the predation.
    We prove the existence of a separatrix curves in the phase plane, determined by the stable manifold of the equilibrium point associated to the Allee effect, implying that the solutions are highly sensitive to the initial conditions.
    Trajectories starting at one side of this separatrix curve have the equilibrium point $(0,0)$ as their $\omega $-limit, while trajectories starting at the other side will approach to one of the following three attractors: a stable limit cycle, a stable coexistence point or the stable equilibrium point $(K,0)$ in which the predators disappear and prey attains their carrying capacity.
    We obtain conditions on the parameter values for the existence of one or two positive hyperbolic equilibrium points and the existence of a limit cycle surrounding one of them. Both ecological processes under study, namely the nonmonotonic functional response and the Allee effect on prey, exert a strong influence on the system dynamics, resulting in multiple domains of attraction.
    Using Liapunov quantities we demonstrate the uniqueness of limit cycle, which constitutes one of the main differences with the model where the Allee effect is not considered. Computer simulations are also given in support of the conclusions.
Citation: Eduardo González-Olivares, Betsabé González-Yañez, Jaime Mena-Lorca, José D. Flores. Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey. Mathematical Biosciences & Engineering, 2013, 10 (2) : 345-367. doi: 10.3934/mbe.2013.10.345
References:
[1]

A. Aguilera-Moya and E. González-Olivares, A Gause type model with a generalized class of nonmonotonic functional response,, in, 2 (2004), 206. Google Scholar

[2]

P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect,, SIAM Journal on Applied Mathematics, 69 (2009), 1244. doi: 10.1137/070705210. Google Scholar

[3]

D. K. Arrowsmith and C. M. Place, "Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour,", Chapman and Hall, (1992). Google Scholar

[4]

A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations,", World Scientific, (1998). doi: 10.1142/9789812798725. Google Scholar

[5]

L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management,, Trends in Ecology and Evolution, 22 (2007), 185. Google Scholar

[6]

D. S. Boukal and L. Berec, Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084. Google Scholar

[7]

C. Chicone, "Ordinary Differential Equations with Applications,", (2nd edition), (2006). Google Scholar

[8]

C. W. Clark, "Mathematical Bioeconomic: The Optimal Management of Renewable Resources,", (2nd edition), (1990). Google Scholar

[9]

C. W. Clark, "The Worldwide Crisis in Fisheries: Economic Model and Human Behavior,", Cambridge University Press, (2007). Google Scholar

[10]

C. S. Coleman, Hilbert's 16th. problem: How many cycles?,, in, (1983), 279. Google Scholar

[11]

J. B. Collings, The effect of the functional response on the bifurcation behavior of a mite predator-prey interaction model,, Journal of Mathematical Biology, 36 (1997), 149. doi: 10.1007/s002850050095. Google Scholar

[12]

E. D. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations,, SIAM Journal on Applied Mathematics, 46 (1986), 630. doi: 10.1137/0146043. Google Scholar

[13]

F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse dependence and the Allee effect,, Trends in Ecology and Evolution, 14 (1999), 405. Google Scholar

[14]

F. Courchamp, L. Berec and J. Gascoigne, "Allee effects in Ecology and Conservation,", Oxford University Press, (2008). Google Scholar

[15]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Ttheory of Planar Differential Systems,", Springer, (2006). Google Scholar

[16]

H. I. Freedman, "Deterministic Mathematical Model in Population Ecology,", Marcel Dekker, (1980). Google Scholar

[17]

H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisted,, Bulletin of Mathematical Biology, 48 (1986), 493. doi: 10.1016/S0092-8240(86)90004-2. Google Scholar

[18]

V. A. Gaiko, "Global Bifurcation Theory and Hilbert's Sixteenth Problem,", Mathematics an its applications, 559 (2003). Google Scholar

[19]

J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation,, Journal of Applied Ecology, 41 (2004), 801. Google Scholar

[20]

E. González-Olivares, B. González-Yañez, E. Sáez and I. Szantó, On the number of limit cycles in a predator prey model with non-monotonic functional response,, Discrete and Continuous Dynamical Systems, 6 (2006), 525. doi: 10.3934/dcdsb.2006.6.525. Google Scholar

[21]

E. González-Olivares, B. González-Yañez, J. Mena-Lorca and R. Ramos-Jiliberto, Modelling the Allee effect: Are the different mathematical forms proposed equivalents?,, in, (2007), 53. Google Scholar

[22]

E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of limit cycle in a Gause-type predator-prey model considering Allee effect on prey,, Nonlinear Analysis: Real World and Applications, 12 (2011), 2931. doi: 10.1016/j.nonrwa.2011.04.003. Google Scholar

[23]

E. González-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey,, Bulletin of Mathematical Biology, 73 (2011), 1378. doi: 10.1007/s11538-010-9577-5. Google Scholar

[24]

E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model considering a simple form to the Allee effect on prey,, Applied Mathematical Modelling, 35 (2011), 366. doi: 10.1016/j.apm.2010.07.001. Google Scholar

[25]

B. González-Yañez and E. González-Olivares, Consequences of Allee effect on a Gause type predator-prey model with nonmonotonic functional response,, in, 2 (2004), 358. Google Scholar

[26]

K. Hasík, On a predator-prey system of Gause type,, Journal of Mathematical Biology, 60 (2010), 59. doi: 10.1007/s00285-009-0257-8. Google Scholar

[27]

M. Kot, "Elementary Mathematical Ecology,", Cambridge University Press, (2001). doi: 10.1017/CBO9780511608520. Google Scholar

[28]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, Mathematical Biosciences, 88 (1988), 67. doi: 10.1016/0025-5564(88)90049-1. Google Scholar

[29]

M. Liermann and R. Hilborn, Depensation: Evidence, models and implications,, Fish and Fisheries, 2 (2001), 33. Google Scholar

[30]

L. Perko, "Differential Equations and Dynamical Systems,", (3rd ed), (2001). Google Scholar

[31]

A. Rojas-Palma, E. González-Olivares and B. González-Yañez, Metastability in a Gause type predator-prey models with sigmoid functional response and multiplicative Allee effect on prey,, in, (2007), 295. Google Scholar

[32]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM Journal of Applied Mathematics, 61 (2001), 1445. doi: 10.1137/S0036139999361896. Google Scholar

[33]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation,, Trends in Ecology and Evolution, 14 (1999), 401. Google Scholar

[34]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, 87 (1999), 185. Google Scholar

[35]

R. J. Taylor, "Predation,", Chapman and Hall, (1984). Google Scholar

[36]

P. Turchin, "Complex Population Dynamics. A Theoretical/Empirical Synthesis,", Monographs in Population Biology 35, (2003). Google Scholar

[37]

G. A. K. van Voorn, L. Hemerik, M. P. Boer and B. W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect,, Mathematical Biosciences, 209 (2007), 451. doi: 10.1016/j.mbs.2007.02.006. Google Scholar

[38]

S. Véliz-Retamales and E. González-Olivares, Dynamics of a Gause type prey-predator model with a rational nonmonotonic consumption function,, in, 2 (2004), 181. Google Scholar

[39]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey,, Journal of Mathematical Biology, 62 (2011), 291. doi: 10.1007/s00285-010-0332-1. Google Scholar

[40]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer,", (2nd edition), (1991). Google Scholar

[41]

G. S. W. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defense,, SIAM Journal on Applied Mathematics, 48 (1988), 592. doi: 10.1137/0148033. Google Scholar

[42]

D. Xiao and S. Ruan, Bifurcations in a predator-prey system with group defense,, International Journal of Bifurcation and Chaos, 11 (2001), 2123. doi: 10.1142/S021812740100336X. Google Scholar

[43]

D. Xiao and Z. Zhang, On the uniquenes and nonexsitence of limit cycles for predator-prey systems,, Nonlinearity, 16 (2003), 1185. doi: 10.1088/0951-7715/16/3/321. Google Scholar

[44]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response,, SIAM Journal on Applied Mathematics, 63 (2002), 636. doi: 10.1137/S0036139901397285. Google Scholar

[45]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling type II functional response,, Applied Mathematics and Computation, 217 (2010), 3542. doi: 10.1016/j.amc.2010.09.029. Google Scholar

show all references

References:
[1]

A. Aguilera-Moya and E. González-Olivares, A Gause type model with a generalized class of nonmonotonic functional response,, in, 2 (2004), 206. Google Scholar

[2]

P. Aguirre, E. González-Olivares and E. Sáez, Three limit cycles in a Leslie-Gower predator-prey model with additive Allee effect,, SIAM Journal on Applied Mathematics, 69 (2009), 1244. doi: 10.1137/070705210. Google Scholar

[3]

D. K. Arrowsmith and C. M. Place, "Dynamical Systems. Differential Equations, Maps and Chaotic Behaviour,", Chapman and Hall, (1992). Google Scholar

[4]

A. D. Bazykin, "Nonlinear Dynamics of Interacting Populations,", World Scientific, (1998). doi: 10.1142/9789812798725. Google Scholar

[5]

L. Berec, E. Angulo and F. Courchamp, Multiple Allee effects and population management,, Trends in Ecology and Evolution, 22 (2007), 185. Google Scholar

[6]

D. S. Boukal and L. Berec, Single-species models and the Allee effect: Extinction boundaries, sex ratios and mate encounters,, Journal of Theoretical Biology, 218 (2002), 375. doi: 10.1006/jtbi.2002.3084. Google Scholar

[7]

C. Chicone, "Ordinary Differential Equations with Applications,", (2nd edition), (2006). Google Scholar

[8]

C. W. Clark, "Mathematical Bioeconomic: The Optimal Management of Renewable Resources,", (2nd edition), (1990). Google Scholar

[9]

C. W. Clark, "The Worldwide Crisis in Fisheries: Economic Model and Human Behavior,", Cambridge University Press, (2007). Google Scholar

[10]

C. S. Coleman, Hilbert's 16th. problem: How many cycles?,, in, (1983), 279. Google Scholar

[11]

J. B. Collings, The effect of the functional response on the bifurcation behavior of a mite predator-prey interaction model,, Journal of Mathematical Biology, 36 (1997), 149. doi: 10.1007/s002850050095. Google Scholar

[12]

E. D. Conway and J. A. Smoller, Global analysis of a system of predator-prey equations,, SIAM Journal on Applied Mathematics, 46 (1986), 630. doi: 10.1137/0146043. Google Scholar

[13]

F. Courchamp, T. Clutton-Brock and B. Grenfell, Inverse dependence and the Allee effect,, Trends in Ecology and Evolution, 14 (1999), 405. Google Scholar

[14]

F. Courchamp, L. Berec and J. Gascoigne, "Allee effects in Ecology and Conservation,", Oxford University Press, (2008). Google Scholar

[15]

F. Dumortier, J. Llibre and J. C. Artés, "Qualitative Ttheory of Planar Differential Systems,", Springer, (2006). Google Scholar

[16]

H. I. Freedman, "Deterministic Mathematical Model in Population Ecology,", Marcel Dekker, (1980). Google Scholar

[17]

H. I. Freedman and G. S. K. Wolkowicz, Predator-prey systems with group defence: The paradox of enrichment revisted,, Bulletin of Mathematical Biology, 48 (1986), 493. doi: 10.1016/S0092-8240(86)90004-2. Google Scholar

[18]

V. A. Gaiko, "Global Bifurcation Theory and Hilbert's Sixteenth Problem,", Mathematics an its applications, 559 (2003). Google Scholar

[19]

J. C. Gascoigne and R. N. Lipcius, Allee effects driven by predation,, Journal of Applied Ecology, 41 (2004), 801. Google Scholar

[20]

E. González-Olivares, B. González-Yañez, E. Sáez and I. Szantó, On the number of limit cycles in a predator prey model with non-monotonic functional response,, Discrete and Continuous Dynamical Systems, 6 (2006), 525. doi: 10.3934/dcdsb.2006.6.525. Google Scholar

[21]

E. González-Olivares, B. González-Yañez, J. Mena-Lorca and R. Ramos-Jiliberto, Modelling the Allee effect: Are the different mathematical forms proposed equivalents?,, in, (2007), 53. Google Scholar

[22]

E. González-Olivares, H. Meneses-Alcay, B. González-Yañez, J. Mena-Lorca, A. Rojas-Palma and R. Ramos-Jiliberto, Multiple stability and uniqueness of limit cycle in a Gause-type predator-prey model considering Allee effect on prey,, Nonlinear Analysis: Real World and Applications, 12 (2011), 2931. doi: 10.1016/j.nonrwa.2011.04.003. Google Scholar

[23]

E. González-Olivares and A. Rojas-Palma, Multiple limit cycles in a Gause type predator-prey model with Holling type III functional response and Allee effect on prey,, Bulletin of Mathematical Biology, 73 (2011), 1378. doi: 10.1007/s11538-010-9577-5. Google Scholar

[24]

E. González-Olivares, J. Mena-Lorca, A. Rojas-Palma and J. D. Flores, Dynamical complexities in the Leslie-Gower predator-prey model considering a simple form to the Allee effect on prey,, Applied Mathematical Modelling, 35 (2011), 366. doi: 10.1016/j.apm.2010.07.001. Google Scholar

[25]

B. González-Yañez and E. González-Olivares, Consequences of Allee effect on a Gause type predator-prey model with nonmonotonic functional response,, in, 2 (2004), 358. Google Scholar

[26]

K. Hasík, On a predator-prey system of Gause type,, Journal of Mathematical Biology, 60 (2010), 59. doi: 10.1007/s00285-009-0257-8. Google Scholar

[27]

M. Kot, "Elementary Mathematical Ecology,", Cambridge University Press, (2001). doi: 10.1017/CBO9780511608520. Google Scholar

[28]

Y. Kuang and H. I. Freedman, Uniqueness of limit cycles in Gause-type models of predator-prey systems,, Mathematical Biosciences, 88 (1988), 67. doi: 10.1016/0025-5564(88)90049-1. Google Scholar

[29]

M. Liermann and R. Hilborn, Depensation: Evidence, models and implications,, Fish and Fisheries, 2 (2001), 33. Google Scholar

[30]

L. Perko, "Differential Equations and Dynamical Systems,", (3rd ed), (2001). Google Scholar

[31]

A. Rojas-Palma, E. González-Olivares and B. González-Yañez, Metastability in a Gause type predator-prey models with sigmoid functional response and multiplicative Allee effect on prey,, in, (2007), 295. Google Scholar

[32]

S. Ruan and D. Xiao, Global analysis in a predator-prey system with nonmonotonic functional response,, SIAM Journal of Applied Mathematics, 61 (2001), 1445. doi: 10.1137/S0036139999361896. Google Scholar

[33]

P. A. Stephens and W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation,, Trends in Ecology and Evolution, 14 (1999), 401. Google Scholar

[34]

P. A. Stephens, W. J. Sutherland and R. P. Freckleton, What is the Allee effect?,, Oikos, 87 (1999), 185. Google Scholar

[35]

R. J. Taylor, "Predation,", Chapman and Hall, (1984). Google Scholar

[36]

P. Turchin, "Complex Population Dynamics. A Theoretical/Empirical Synthesis,", Monographs in Population Biology 35, (2003). Google Scholar

[37]

G. A. K. van Voorn, L. Hemerik, M. P. Boer and B. W. Kooi, Heteroclinic orbits indicate overexploitation in predator-prey systems with a strong Allee effect,, Mathematical Biosciences, 209 (2007), 451. doi: 10.1016/j.mbs.2007.02.006. Google Scholar

[38]

S. Véliz-Retamales and E. González-Olivares, Dynamics of a Gause type prey-predator model with a rational nonmonotonic consumption function,, in, 2 (2004), 181. Google Scholar

[39]

J. Wang, J. Shi and J. Wei, Predator-prey system with strong Allee effect in prey,, Journal of Mathematical Biology, 62 (2011), 291. doi: 10.1007/s00285-010-0332-1. Google Scholar

[40]

S. Wolfram, "Mathematica: A System for Doing Mathematics by Computer,", (2nd edition), (1991). Google Scholar

[41]

G. S. W. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defense,, SIAM Journal on Applied Mathematics, 48 (1988), 592. doi: 10.1137/0148033. Google Scholar

[42]

D. Xiao and S. Ruan, Bifurcations in a predator-prey system with group defense,, International Journal of Bifurcation and Chaos, 11 (2001), 2123. doi: 10.1142/S021812740100336X. Google Scholar

[43]

D. Xiao and Z. Zhang, On the uniquenes and nonexsitence of limit cycles for predator-prey systems,, Nonlinearity, 16 (2003), 1185. doi: 10.1088/0951-7715/16/3/321. Google Scholar

[44]

H. Zhu, S. A. Campbell and G. S. K. Wolkowicz, Bifurcation analysis of a predator-prey system with nonmonotonic functional response,, SIAM Journal on Applied Mathematics, 63 (2002), 636. doi: 10.1137/S0036139901397285. Google Scholar

[45]

J. Zu and M. Mimura, The impact of Allee effect on a predator-prey system with Holling type II functional response,, Applied Mathematics and Computation, 217 (2010), 3542. doi: 10.1016/j.amc.2010.09.029. Google Scholar

[1]

H. W. Broer, K. Saleh, V. Naudot, R. Roussarie. Dynamics of a predator-prey model with non-monotonic response function. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 221-251. doi: 10.3934/dcds.2007.18.221

[2]

E. González-Olivares, B. González-Yañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 525-534. doi: 10.3934/dcdsb.2006.6.525

[3]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214

[4]

Qizhen Xiao, Binxiang Dai. Heteroclinic bifurcation for a general predator-prey model with Allee effect and state feedback impulsive control strategy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1065-1081. doi: 10.3934/mbe.2015.12.1065

[5]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[6]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[7]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[8]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[9]

Na Min, Mingxin Wang. Hopf bifurcation and steady-state bifurcation for a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1071-1099. doi: 10.3934/dcds.2019045

[10]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[11]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[12]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[13]

Wan-Tong Li, Yong-Hong Fan. Periodic solutions in a delayed predator-prey models with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 175-185. doi: 10.3934/dcdsb.2007.8.175

[14]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[15]

Shanshan Chen, Jianshe Yu. Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 43-62. doi: 10.3934/dcds.2018002

[16]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[17]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[18]

Yujing Gao, Bingtuan Li. Dynamics of a ratio-dependent predator-prey system with a strong Allee effect. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2283-2313. doi: 10.3934/dcdsb.2013.18.2283

[19]

Yuying Liu, Yuxiao Guo, Junjie Wei. Dynamics in a diffusive predator-prey system with stage structure and strong allee effect. Communications on Pure & Applied Analysis, 2020, 19 (2) : 883-910. doi: 10.3934/cpaa.2020040

[20]

Wenjie Ni, Mingxin Wang. Dynamical properties of a Leslie-Gower prey-predator model with strong Allee effect in prey. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3409-3420. doi: 10.3934/dcdsb.2017172

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]