• Previous Article
    Uniqueness of limit cycles and multiple attractors in a Gause-type predator-prey model with nonmonotonic functional response and Allee effect on prey
  • MBE Home
  • This Issue
  • Next Article
    An extension of Gompertzian growth dynamics: Weibull and Fréchet models
2013, 10(2): 369-378. doi: 10.3934/mbe.2013.10.369

Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility

1. 

OCCAM, Mathematical Institute, 24 - 29 St Giles', Oxford, OX1 3LB, United Kingdom

2. 

Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain

Received  January 2012 Revised  September 2012 Published  January 2013

We consider global asymptotic properties for the SIR and SEIR age structured models for infectious diseases where the susceptibility depends on the age. Using the direct Lyapunov method with Volterra type Lyapunov functions, we establish conditions for the global stability of a unique endemic steady state and the infection-free steady state.
Citation: Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369
References:
[1]

P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis,, Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1.

[2]

A. Fall, A. Iggidr, G. Sallet and J. J. Tewa, Epidemiological models and Lyapunov functions,, Math. Model. Nat. Phenom., 2 (2007), 62. doi: 10.1051/mmnp:2008011.

[3]

P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal,, SIAM J. Appl. Math., 2 (2006), 337. doi: 10.1137/060654876.

[4]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Eng., 3 (2006), 513. doi: 10.3934/mbe.2006.3.513.

[5]

H. Guo and M. Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases,, J. Biol. Dynamics, 2 (2008), 154. doi: 10.1080/17513750802120877.

[6]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599. doi: 10.1137/S0036144500371907.

[7]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004.

[8]

G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 24 (2011), 1199. doi: 10.1016/j.aml.2011.02.007.

[9]

G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence,, J. Math. Biol., 63 (2011), 129. doi: 10.1007/s00285-010-0368-2.

[10]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differentical equations models of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821.

[11]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192. doi: 10.1007/s11538-009-9487-6.

[12]

A. Iggidr, J. Mbang and G. Sallet, Stability analysis of within-host parasite models with delays,, Math. Biosci., 209 (2007), 51. doi: 10.1016/j.mbs.2007.01.008.

[13]

A. Korobeinikov, P. K. Maini and W. J. Walker, Estimation of effective vaccination rate: Pertussis in New Zealand as a case study,, J. Theor. Biol., 224 (2003), 269. doi: 10.1016/S0022-5193(03)00163-2.

[14]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages,, Bull. Math. Biol., 71 (2009), 75. doi: 10.1007/s11538-007-9196-y.

[15]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y.

[16]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate,, Math. Med. Biol., 26 (2009), 225. doi: 10.1093/imammb/dqp009.

[17]

A. Korobeinikov, Stability of ecosystem: Global properties of a general prey-predator model,, Math. Med. Biol., 26 (2009), 309. doi: 10.1093/imammb/dqp009.

[18]

A. Korobeinikov, Global properties of a general predator-prey model with non-symmetric attack and consumption rate,, Discrete Cont. Dyn. Syst. Ser. B, 14 (2010), 1095. doi: 10.3934/dcdsb.2010.14.1095.

[19]

J. P. LaSalle, "The Stability of Dynamical Systems,", SIAM, (1976).

[20]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38. doi: 10.1016/j.jmaa.2009.09.017.

[21]

S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy,, Math. Biosci. Eng., 7 (2010), 675. doi: 10.3934/mbe.2010.7.675.

[22]

A. M. Lyapunov, "The General Problem of the Stability of Motion,", Taylor & Francis, (1992).

[23]

P. Magal, C. C. McCluskey and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122.

[24]

V. G. Matsenko and V. N. Rubanovskii, The Lyapunov direct method for analyzing the dynamics of the age structure of biological populations,, USSR Comput Maths Math. Phys., 23 (1983), 45.

[25]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 6 (2009), 603. doi: 10.3934/mbe.2009.6.603.

[26]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete,, Nonlinear Anal. Real World Appl., 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014.

[27]

C. C. McCluskey, Delay versus age-of-infection-global stability,, Appl. Math. Comput., 217 (2010), 3046. doi: 10.1016/j.amc.2010.08.037.

[28]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. Real World Appl., 11 (2010), 3106. doi: 10.1016/j.nonrwa.2009.11.005.

[29]

A. V. Melnik and A. Korobeinikov, Global asymptotic properties of staged models with multiple progression pathways for infectious diseases,, Math. Biosci. Eng., 8 (2011), 1019. doi: 10.3934/mbe.2011.8.1019.

[30]

H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators,, J. Differ. Equations, 250 (2011), 3772. doi: 10.1016/j.jde.2011.01.007.

[31]

H. R. Thieme, "Mathematics in Population Biology,", Princeton University Press, (2003).

[32]

H. R. Thieme, Disease extinction and disease persistence in age structured epidemic models,, Nonlinear Anal., 47 (2001), 6181. doi: 10.1016/S0362-546X(01)00677-0.

[33]

V. Volterra, "Leçons Sur la Théorie Mathématique de la Lutte Pour la Vie,", Gauthier-Villars, (1931).

show all references

References:
[1]

P. Adda, J. L. Dimi, A. Iggidr, J. C. Kamgang, G. Sallet and J. J. Tewa, General models of host-parasite systems. Global analysis,, Disc. Cont. Dyn. Syst. Ser. B, 8 (2007), 1.

[2]

A. Fall, A. Iggidr, G. Sallet and J. J. Tewa, Epidemiological models and Lyapunov functions,, Math. Model. Nat. Phenom., 2 (2007), 62. doi: 10.1051/mmnp:2008011.

[3]

P. Georgescu and Y.-H. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal,, SIAM J. Appl. Math., 2 (2006), 337. doi: 10.1137/060654876.

[4]

H. Guo and M. Y. Li, Global dynamics of a staged progression model for infectious diseases,, Math. Biosci. Eng., 3 (2006), 513. doi: 10.3934/mbe.2006.3.513.

[5]

H. Guo and M. Y. Li, Global dynamics of a staged-progression model with amelioration for infectious diseases,, J. Biol. Dynamics, 2 (2008), 154. doi: 10.1080/17513750802120877.

[6]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599. doi: 10.1137/S0036144500371907.

[7]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 22 (2009), 1690. doi: 10.1016/j.aml.2009.06.004.

[8]

G. Huang, W. Ma and Y. Takeuchi, Global analysis for delay virus dynamics model with Beddington-DeAngelis functional response,, Appl. Math. Lett., 24 (2011), 1199. doi: 10.1016/j.aml.2011.02.007.

[9]

G. Huang and Y. Takeuchi, Global analysis on delay epidemiological dynamic models with nonlinear incidence,, J. Math. Biol., 63 (2011), 129. doi: 10.1007/s00285-010-0368-2.

[10]

G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differentical equations models of viral infections,, SIAM J. Appl. Math., 70 (2010), 2693. doi: 10.1137/090780821.

[11]

G. Huang, Y. Takeuchi, W. Ma and D. Wei, Global stability for delay SIR and SEIR epidemic models with nonlinear incidence rate,, Bull. Math. Biol., 72 (2010), 1192. doi: 10.1007/s11538-009-9487-6.

[12]

A. Iggidr, J. Mbang and G. Sallet, Stability analysis of within-host parasite models with delays,, Math. Biosci., 209 (2007), 51. doi: 10.1016/j.mbs.2007.01.008.

[13]

A. Korobeinikov, P. K. Maini and W. J. Walker, Estimation of effective vaccination rate: Pertussis in New Zealand as a case study,, J. Theor. Biol., 224 (2003), 269. doi: 10.1016/S0022-5193(03)00163-2.

[14]

A. Korobeinikov, Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages,, Bull. Math. Biol., 71 (2009), 75. doi: 10.1007/s11538-007-9196-y.

[15]

A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence,, Bull. Math. Biol., 69 (2007), 1871. doi: 10.1007/s11538-007-9196-y.

[16]

A. Korobeinikov, Global asymptotic properties of virus dynamics models with dose dependent parasite reproduction and virulence, and nonlinear incidence rate,, Math. Med. Biol., 26 (2009), 225. doi: 10.1093/imammb/dqp009.

[17]

A. Korobeinikov, Stability of ecosystem: Global properties of a general prey-predator model,, Math. Med. Biol., 26 (2009), 309. doi: 10.1093/imammb/dqp009.

[18]

A. Korobeinikov, Global properties of a general predator-prey model with non-symmetric attack and consumption rate,, Discrete Cont. Dyn. Syst. Ser. B, 14 (2010), 1095. doi: 10.3934/dcdsb.2010.14.1095.

[19]

J. P. LaSalle, "The Stability of Dynamical Systems,", SIAM, (1976).

[20]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38. doi: 10.1016/j.jmaa.2009.09.017.

[21]

S. Liu and L. Wang, Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy,, Math. Biosci. Eng., 7 (2010), 675. doi: 10.3934/mbe.2010.7.675.

[22]

A. M. Lyapunov, "The General Problem of the Stability of Motion,", Taylor & Francis, (1992).

[23]

P. Magal, C. C. McCluskey and G. F. Webb, Liapunov functional and global asymptotic stability for an infection-age model,, Appl. Anal., 89 (2010), 1109. doi: 10.1080/00036810903208122.

[24]

V. G. Matsenko and V. N. Rubanovskii, The Lyapunov direct method for analyzing the dynamics of the age structure of biological populations,, USSR Comput Maths Math. Phys., 23 (1983), 45.

[25]

C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity and infinite delay,, Math. Biosci. Eng., 6 (2009), 603. doi: 10.3934/mbe.2009.6.603.

[26]

C. C. McCluskey, Complete global stability for an SIR epidemic model with delay - distributed or discrete,, Nonlinear Anal. Real World Appl., 11 (2010), 55. doi: 10.1016/j.nonrwa.2008.10.014.

[27]

C. C. McCluskey, Delay versus age-of-infection-global stability,, Appl. Math. Comput., 217 (2010), 3046. doi: 10.1016/j.amc.2010.08.037.

[28]

C. C. McCluskey, Global stability for an SIR epidemic model with delay and nonlinear incidence,, Nonlinear Anal. Real World Appl., 11 (2010), 3106. doi: 10.1016/j.nonrwa.2009.11.005.

[29]

A. V. Melnik and A. Korobeinikov, Global asymptotic properties of staged models with multiple progression pathways for infectious diseases,, Math. Biosci. Eng., 8 (2011), 1019. doi: 10.3934/mbe.2011.8.1019.

[30]

H. R. Thieme, Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators,, J. Differ. Equations, 250 (2011), 3772. doi: 10.1016/j.jde.2011.01.007.

[31]

H. R. Thieme, "Mathematics in Population Biology,", Princeton University Press, (2003).

[32]

H. R. Thieme, Disease extinction and disease persistence in age structured epidemic models,, Nonlinear Anal., 47 (2001), 6181. doi: 10.1016/S0362-546X(01)00677-0.

[33]

V. Volterra, "Leçons Sur la Théorie Mathématique de la Lutte Pour la Vie,", Gauthier-Villars, (1931).

[1]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[2]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete & Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[3]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[4]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[5]

Yu Yang, Shigui Ruan, Dongmei Xiao. Global stability of an age-structured virus dynamics model with Beddington-DeAngelis infection function. Mathematical Biosciences & Engineering, 2015, 12 (4) : 859-877. doi: 10.3934/mbe.2015.12.859

[6]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[7]

Guangrui Li, Ming Mei, Yau Shu Wong. Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model. Mathematical Biosciences & Engineering, 2008, 5 (1) : 85-100. doi: 10.3934/mbe.2008.5.85

[8]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[9]

Diène Ngom, A. Iggidir, Aboudramane Guiro, Abderrahim Ouahbi. An observer for a nonlinear age-structured model of a harvested fish population. Mathematical Biosciences & Engineering, 2008, 5 (2) : 337-354. doi: 10.3934/mbe.2008.5.337

[10]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure & Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[11]

Yueding Yuan, Zhiming Guo, Moxun Tang. A nonlocal diffusion population model with age structure and Dirichlet boundary condition. Communications on Pure & Applied Analysis, 2015, 14 (5) : 2095-2115. doi: 10.3934/cpaa.2015.14.2095

[12]

Fadia Bekkal-Brikci, Khalid Boushaba, Ovide Arino. Nonlinear age structured model with cannibalism. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 201-218. doi: 10.3934/dcdsb.2007.7.201

[13]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[14]

Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083

[15]

Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501

[16]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[17]

Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete & Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

[18]

Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049

[19]

Ryszard Rudnicki, Radosław Wieczorek. On a nonlinear age-structured model of semelparous species. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2641-2656. doi: 10.3934/dcdsb.2014.19.2641

[20]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]