2013, 10(2): 379-398. doi: 10.3934/mbe.2013.10.379

An extension of Gompertzian growth dynamics: Weibull and Fréchet models

1. 

Instituto Superior de Engenharia de Lisboa - ISEL, ADM and CEAUL, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa

Received  February 2012 Revised  October 2012 Published  January 2013

In this work a new probabilistic and dynamical approach to an extension of the Gompertz law is proposed. A generalized family of probability density functions, designated by $Beta^*(p,q)$, which is proportional to the right hand side of the Tsoularis-Wallace model, is studied. In particular, for $p = 2$, the investigation is extended to the extreme value models of Weibull and Fréchet type. These models, described by differential equations, are proportional to the hyper-Gompertz growth model. It is proved that the $Beta^*(2,q)$ densities are a power of betas mixture, and that its dynamics are determined by a non-linear coupling of probabilities. The dynamical analysis is performed using techniques of symbolic dynamics and the system complexity is measured using topological entropy. Generally, the natural history of a malignant tumour is reflected through bifurcation diagrams, in which are identified regions of regression, stability, bifurcation, chaos and terminus.
Citation: J. Leonel Rocha, Sandra M. Aleixo. An extension of Gompertzian growth dynamics: Weibull and Fréchet models. Mathematical Biosciences & Engineering, 2013, 10 (2) : 379-398. doi: 10.3934/mbe.2013.10.379
References:
[1]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Populational growth models proportional to beta densities with Allee effect,, AIP Conf. Proc. American Inst. of Physics, 1124 (2009), 3.

[2]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Dynamical behavior on the parameter space: new populational growth models proportional to beta densities,, Proc. Int. Conf. on Information Technology Interfaces, (2009), 213.

[3]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Probabilistic methods in dynamical analysis: populations growths associated to models Beta$(p,q)$ with Allee effect,, in, (2011), 79. doi: 10.1007/978-3-642-14788-3_5.

[4]

A. A. Blumberg, Logistic growth rate functions,, J. of Theoret. Biol., 21 (1968), 42.

[5]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources,", John Wiley $&$ Sons, (1990).

[6]

D. Kirschner and A. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy,, Math. Biosci. Eng., 6 (2009), 573. doi: 10.3934/mbe.2009.6.573.

[7]

F. Kozusko and Z. Bajzer, Combining gompertzian growth and cell population dynamics,, Math. Biosci., 185 (2003), 153. doi: 10.1016/S0025-5564(03)00094-4.

[8]

A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490.

[9]

A. K. Laird, S. A. Tyler and A. D. Barton, Dynamics of normal growth,, Growth, 29 (1965), 233.

[10]

D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Codings,", Cambridge University Press, (1995). doi: 10.1017/CBO9780511626302.

[11]

R. López-Ruiz and D. Fournier-Prunaret, Complex behavior in a discrete coupled logistic model for the symbiotic interaction of two species,, Math. Biosci. Eng., 1 (2004), 307. doi: 10.3934/mbe.2004.1.307.

[12]

R. López-Ruiz and D. Fournier-Prunaret, Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species,, Chaos, 41 (2009), 334. doi: 10.1016/j.chaos.2008.01.015.

[13]

A. S. Martinez, R. S. González and C. A. S. Terçariol, Continuous growth models in terms of generalized logarithm and exponential functions,, Physica A, 387 (2008), 5679. doi: 10.1016/j.physa.2008.06.015.

[14]

M. Marušić and Ž. Bajzer, Generalized two-parameter equation of growth,, J. Math. Anal. Appl., 179 (1993), 446. doi: 10.1006/jmaa.1993.1361.

[15]

W. Melo and S. van Strien, "One-Dimensional Dynamics,", Springer, (1993).

[16]

J. Milnor and W. Thurston, On iterated maps of the interval,, Dynamical systems (College Park, (1986), 465. doi: 10.1007/BFb0082847.

[17]

M. Molski and J. Konarsky, On the Gompertzian growth in the fractal space-time,, BioSystems, 92 (2008), 245.

[18]

A. d'Onofrio, A general framework for modeling tumor-imune system competition and immunotherapy: Matematical analysis and biomedical inferences,, Physica D, 208 (2005), 220. doi: 10.1016/j.physd.2005.06.032.

[19]

A. d'Onofrio, A. Fasano and B. Monechi, A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth,, Math. Biosciences, 230 (2011), 45. doi: 10.1016/j.mbs.2011.01.001.

[20]

D. D. Pestana and S.Velosa, "Introduçāo à Probabilidade e à Estatística,", Fundaçāo Calouste Gulbenkian, (2008).

[21]

D. D. Pestana, S. M. Aleixo and J. L. Rocha, Regular variation, paretian distributions, and the interplay of light and heavy tails in the fractality of asymptotic models,, in, (2011), 309.

[22]

J. L. Rocha and J. Sousa Ramos, Weighted kneading theory of one-dimensional maps with a hole,, Int. J. Math. Math. Sci., 38 (2004), 2019. doi: 10.1155/S016117120430428X.

[23]

J. L. Rocha and S. M. Aleixo, Dynamical analysis in growth models: Blumberg's equation,, Discrete Contin. Dyn. Syst.-Ser.B, 18 (2013), 783.

[24]

S. Sakanoue, Extended logistic model for growth of single-species populations,, Ecol. Model., 205 (2007), 159.

[25]

H. Schättler, U. Ledzewicz and B. Cardwell, Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis,, Math. Biosci. Eng., 8 (2011), 355. doi: 10.3934/mbe.2011.8.355.

[26]

D. Singer, Stable orbits and bifurcations of maps of the interval,, SIAM J. Appl. Math., 35 (1978), 260.

[27]

A. Tsoularis, Analysis of logistic growth models,, Res. Lett. Inf. Math. Sci., 2 (2001), 23.

[28]

M. E. Turner Jr., E. L. Bradley Jr., K. A. Kirk and K. M. Pruitt, A theory of growth,, Math. Biosci., 29 (1976), 367.

[29]

P. Waliszewski and J. Konarski, The gompertzian curve reveals fractal properties of tumour growth,, Chaos Solitons $&$ Fractals, 16 (2003), 665.

[30]

P. Waliszewski and J. Konarski, A mystery of the Gompertz function,, in, (2005), 277.

[31]

P. Waliszewski, A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization,, Byosystems, 82 (2005), 61.

[32]

P. Waliszewski, A principle of fractal-stochastic dualism, couplings, complementarity growth,, J. Control Eng. and Appl. Informatics, 4 (2009), 45.

show all references

References:
[1]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Populational growth models proportional to beta densities with Allee effect,, AIP Conf. Proc. American Inst. of Physics, 1124 (2009), 3.

[2]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Dynamical behavior on the parameter space: new populational growth models proportional to beta densities,, Proc. Int. Conf. on Information Technology Interfaces, (2009), 213.

[3]

S. M. Aleixo, J. L. Rocha and D. D. Pestana, Probabilistic methods in dynamical analysis: populations growths associated to models Beta$(p,q)$ with Allee effect,, in, (2011), 79. doi: 10.1007/978-3-642-14788-3_5.

[4]

A. A. Blumberg, Logistic growth rate functions,, J. of Theoret. Biol., 21 (1968), 42.

[5]

C. W. Clark, "Mathematical Bioeconomics: The Optimal Management of Renewable Resources,", John Wiley $&$ Sons, (1990).

[6]

D. Kirschner and A. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy,, Math. Biosci. Eng., 6 (2009), 573. doi: 10.3934/mbe.2009.6.573.

[7]

F. Kozusko and Z. Bajzer, Combining gompertzian growth and cell population dynamics,, Math. Biosci., 185 (2003), 153. doi: 10.1016/S0025-5564(03)00094-4.

[8]

A. K. Laird, Dynamics of tumour growth,, Br. J. Cancer, 18 (1964), 490.

[9]

A. K. Laird, S. A. Tyler and A. D. Barton, Dynamics of normal growth,, Growth, 29 (1965), 233.

[10]

D. Lind and B. Marcus, "An Introduction to Symbolic Dynamics and Codings,", Cambridge University Press, (1995). doi: 10.1017/CBO9780511626302.

[11]

R. López-Ruiz and D. Fournier-Prunaret, Complex behavior in a discrete coupled logistic model for the symbiotic interaction of two species,, Math. Biosci. Eng., 1 (2004), 307. doi: 10.3934/mbe.2004.1.307.

[12]

R. López-Ruiz and D. Fournier-Prunaret, Periodic and chaotic events in a discrete model of logistic type for the competitive interaction of two species,, Chaos, 41 (2009), 334. doi: 10.1016/j.chaos.2008.01.015.

[13]

A. S. Martinez, R. S. González and C. A. S. Terçariol, Continuous growth models in terms of generalized logarithm and exponential functions,, Physica A, 387 (2008), 5679. doi: 10.1016/j.physa.2008.06.015.

[14]

M. Marušić and Ž. Bajzer, Generalized two-parameter equation of growth,, J. Math. Anal. Appl., 179 (1993), 446. doi: 10.1006/jmaa.1993.1361.

[15]

W. Melo and S. van Strien, "One-Dimensional Dynamics,", Springer, (1993).

[16]

J. Milnor and W. Thurston, On iterated maps of the interval,, Dynamical systems (College Park, (1986), 465. doi: 10.1007/BFb0082847.

[17]

M. Molski and J. Konarsky, On the Gompertzian growth in the fractal space-time,, BioSystems, 92 (2008), 245.

[18]

A. d'Onofrio, A general framework for modeling tumor-imune system competition and immunotherapy: Matematical analysis and biomedical inferences,, Physica D, 208 (2005), 220. doi: 10.1016/j.physd.2005.06.032.

[19]

A. d'Onofrio, A. Fasano and B. Monechi, A generalization of Gompertz law compatible with the Gyllenberg-Webb theory for tumour growth,, Math. Biosciences, 230 (2011), 45. doi: 10.1016/j.mbs.2011.01.001.

[20]

D. D. Pestana and S.Velosa, "Introduçāo à Probabilidade e à Estatística,", Fundaçāo Calouste Gulbenkian, (2008).

[21]

D. D. Pestana, S. M. Aleixo and J. L. Rocha, Regular variation, paretian distributions, and the interplay of light and heavy tails in the fractality of asymptotic models,, in, (2011), 309.

[22]

J. L. Rocha and J. Sousa Ramos, Weighted kneading theory of one-dimensional maps with a hole,, Int. J. Math. Math. Sci., 38 (2004), 2019. doi: 10.1155/S016117120430428X.

[23]

J. L. Rocha and S. M. Aleixo, Dynamical analysis in growth models: Blumberg's equation,, Discrete Contin. Dyn. Syst.-Ser.B, 18 (2013), 783.

[24]

S. Sakanoue, Extended logistic model for growth of single-species populations,, Ecol. Model., 205 (2007), 159.

[25]

H. Schättler, U. Ledzewicz and B. Cardwell, Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis,, Math. Biosci. Eng., 8 (2011), 355. doi: 10.3934/mbe.2011.8.355.

[26]

D. Singer, Stable orbits and bifurcations of maps of the interval,, SIAM J. Appl. Math., 35 (1978), 260.

[27]

A. Tsoularis, Analysis of logistic growth models,, Res. Lett. Inf. Math. Sci., 2 (2001), 23.

[28]

M. E. Turner Jr., E. L. Bradley Jr., K. A. Kirk and K. M. Pruitt, A theory of growth,, Math. Biosci., 29 (1976), 367.

[29]

P. Waliszewski and J. Konarski, The gompertzian curve reveals fractal properties of tumour growth,, Chaos Solitons $&$ Fractals, 16 (2003), 665.

[30]

P. Waliszewski and J. Konarski, A mystery of the Gompertz function,, in, (2005), 277.

[31]

P. Waliszewski, A principle of fractal-stochastic dualism and Gompertzian dynamics of growth and self-organization,, Byosystems, 82 (2005), 61.

[32]

P. Waliszewski, A principle of fractal-stochastic dualism, couplings, complementarity growth,, J. Control Eng. and Appl. Informatics, 4 (2009), 45.

[1]

Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487

[2]

Jose S. Cánovas, Tönu Puu, Manuel Ruiz Marín. Detecting chaos in a duopoly model via symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 269-278. doi: 10.3934/dcdsb.2010.13.269

[3]

Dominik Kwietniak. Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2451-2467. doi: 10.3934/dcds.2013.33.2451

[4]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[5]

Maria José Pacifico, Fan Yang. Hitting times distribution and extreme value laws for semi-flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5861-5881. doi: 10.3934/dcds.2017255

[6]

Yun Zhao, Wen-Chiao Cheng, Chih-Chang Ho. Q-entropy for general topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2059-2075. doi: 10.3934/dcds.2019086

[7]

H.M. Byrne, S.M. Cox, C.E. Kelly. Macrophage-tumour interactions: In vivo dynamics. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 81-98. doi: 10.3934/dcdsb.2004.4.81

[8]

Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141

[9]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[10]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[11]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[12]

Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043

[13]

Élise Janvresse, Benoît Rittaud, Thierry de la Rue. Dynamics of $\lambda$-continued fractions and $\beta$-shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1477-1498. doi: 10.3934/dcds.2013.33.1477

[14]

Eva Glasmachers, Gerhard Knieper, Carlos Ogouyandjou, Jan Philipp Schröder. Topological entropy of minimal geodesics and volume growth on surfaces. Journal of Modern Dynamics, 2014, 8 (1) : 75-91. doi: 10.3934/jmd.2014.8.75

[15]

César J. Niche. Topological entropy of a magnetic flow and the growth of the number of trajectories. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 577-580. doi: 10.3934/dcds.2004.11.577

[16]

Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo. Efficient numerical method for a model arising in biological stoichiometry of tumour dynamics. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 591-613. doi: 10.3934/dcdss.2019038

[17]

Nicola Soave, Susanna Terracini. Symbolic dynamics for the $N$-centre problem at negative energies. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3245-3301. doi: 10.3934/dcds.2012.32.3245

[18]

Dieter Mayer, Fredrik Strömberg. Symbolic dynamics for the geodesic flow on Hecke surfaces. Journal of Modern Dynamics, 2008, 2 (4) : 581-627. doi: 10.3934/jmd.2008.2.581

[19]

Frédéric Naud. Birkhoff cones, symbolic dynamics and spectrum of transfer operators. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 581-598. doi: 10.3934/dcds.2004.11.581

[20]

David Ralston. Heaviness in symbolic dynamics: Substitution and Sturmian systems. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 287-300. doi: 10.3934/dcdss.2009.2.287

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]