2013, 10(2): 425-444. doi: 10.3934/mbe.2013.10.425

Mathematical modelling and control of echinococcus in Qinghai province, China

1. 

Department of Mathematics, Shanghai University, 99 Shangda Road, Shanghai 200444, China, China, China

2. 

Department of Mathematical Sciences, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043

Received  June 2012 Revised  December 2012 Published  January 2013

In this paper, two mathematical models, the baseline model and the intervention model, are proposed to study the transmission dynamics of echinococcus. A global forward bifurcation completely characterizes the dynamical behavior of the baseline model. That is, when the basic reproductive number is less than one, the disease-free equilibrium is asymptotically globally stable; when the number is greater than one, the endemic equilibrium is asymptotically globally stable. For the intervention model, however, the basic reproduction number alone is not enough to describe the dynamics, particularly for the case where the basic reproductive number is less then one. The emergence of a backward bifurcation enriches the dynamical behavior of the model. Applying these mathematical models to Qinghai Province, China, we found that the infection of echinococcus is in an endemic state. Furthermore, the model appears to be supportive of human interventions in order to change the landscape of echinococcus infection in this region.
Citation: Liumei Wu, Baojun Song, Wen Du, Jie Lou. Mathematical modelling and control of echinococcus in Qinghai province, China. Mathematical Biosciences & Engineering, 2013, 10 (2) : 425-444. doi: 10.3934/mbe.2013.10.425
References:
[1]

CDC., Parasites and health: Echinococcosis,, DPDx, (2009).

[2]

S. H. Yu, H. Wang, X. H. Wu, X. Ma, Y. F. Liu, Y. M. Zhao, Y. Morishima and M. Kawanaka, Cystic and alveolar echinococcosis: An epidemiological survey in a Tibetan population in Southeast Qinghai, China,, Jpn.J.Infect.Dis., 61 (2008), 242.

[3]

Y. R. Yang, M. C. Rosenzvit, L. H. Zhang, J. Z. Zhang and D. P. Mcmanus, Molecular study of echinococcus in west-central China,, Parasitology, 131 (2005), 547.

[4]

H. Wang, L. Li and B. Zhang etc, Status of human hydatid disease report,, in, (2008), 73.

[5]

CDC., Web. April (2010)., \url{http://www.chinacdc.cn/jkzt/tfggwssj/zzfb/crbjcykz/201004/t20100420_24967.htm}., ().

[6]

X. Zhe, Medlive, Web. April (2011)., \url{http://disease.medlive.cn/wiki/entry/10001076_301_0}., ().

[7]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford Univ. Press, (1991).

[8]

Y. Yang, Z. Feng, D. Xu, G. Sandland and D. J. Minchella, Evolution of host resistance to parasite infection in the snail-schistosome-human system,, Journal of Mathematical Biology, 65 (2012), 201. doi: 10.1007/s00285-011-0457-x.

[9]

C. Castillo-Chavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay,, Mathematical Biosciences, 211 (2008), 333. doi: 10.1016/j.mbs.2007.11.001.

[10]

Z. Feng, A. Eppert, F. Milner and D. Minchella, Estimation of parameters governing the transmission dynamics of schistosomes,, Applied Mathematics Letters, 17 (2004), 1105. doi: 10.1016/j.aml.2004.02.002.

[11]

S. G. Ruan, D. M. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission,, Bulletin of Mathematical Biology, 70 (2008), 1098. doi: 10.1007/s11538-007-9292-z.

[12]

Z. M. Chen and L. Zou et.al, Mathematical modelling and control of schistosomiasis in Hubei province, China,, Acta Tropica, 115 (2010), 119.

[13]

P. R. Torgersona, D. H. Williamsb and M. N. Abo-Shehada, Modelling the prevalence of Echinococcus and Taenia species in small ruminants of different ages in northern Jordan,, Veterinary Parasitology, 79 (1998), 35.

[14]

R. M. Mukbel, P. R. Torgerson and M. N. Abo-Shehada, Prevalence of hydatidosis among donkeys in northern Jordan,, Veterinary Parasitology, 88 (2000), 35.

[15]

O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases,, Model building analyis and interpretation, (2000).

[16]

P. van den Driessche and J. Watmough, Reproductive numbers and sub-threshold endemic equilibria for compartmentmodels of disease transmission,, Math. Biosci., 180 (2002), 183. doi: 10.1016/S0025-5564(02)00108-6.

[17]

H. B. Guo and M. Y. Li., Global stability in a mathematical model of tuberculosis,, Canadian applied mathematics quarterly, 14 (2006).

[18]

J. P. LaSalle, "The Stability of Dynamical Systems,", Regional Conference Series in Applied Mathematics, (1976).

[19]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backward bifurcations and batas- trophe in simple models of fatal diseases,, Journal of Mathematical Biology, 36 (1998), 227. doi: 10.1007/s002850050099.

[20]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Math. Biosci. Eng., 1 (2004), 361. doi: 10.3934/mbe.2004.1.361.

[21]

, China Yearbook., \url{http://tongji.cnki.net/kns55/brief/result.aspx?stab=shuzhi}., ().

[22]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, Journal of Theoretical Biology, 254 (2008), 178.

[23]

H. Wang and D. L. A, Analysis of pulmonary echinococcosis cyst excision in 136 cases,, Chinese Journal of Misdiagnostics, 11 (2011).

[24]

P. S. Craig, P. Giraudoux, D. Shi and B. Bartholomot, An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China,, Acta Tropica, 77 (2000), 167.

show all references

References:
[1]

CDC., Parasites and health: Echinococcosis,, DPDx, (2009).

[2]

S. H. Yu, H. Wang, X. H. Wu, X. Ma, Y. F. Liu, Y. M. Zhao, Y. Morishima and M. Kawanaka, Cystic and alveolar echinococcosis: An epidemiological survey in a Tibetan population in Southeast Qinghai, China,, Jpn.J.Infect.Dis., 61 (2008), 242.

[3]

Y. R. Yang, M. C. Rosenzvit, L. H. Zhang, J. Z. Zhang and D. P. Mcmanus, Molecular study of echinococcus in west-central China,, Parasitology, 131 (2005), 547.

[4]

H. Wang, L. Li and B. Zhang etc, Status of human hydatid disease report,, in, (2008), 73.

[5]

CDC., Web. April (2010)., \url{http://www.chinacdc.cn/jkzt/tfggwssj/zzfb/crbjcykz/201004/t20100420_24967.htm}., ().

[6]

X. Zhe, Medlive, Web. April (2011)., \url{http://disease.medlive.cn/wiki/entry/10001076_301_0}., ().

[7]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans,", Oxford Univ. Press, (1991).

[8]

Y. Yang, Z. Feng, D. Xu, G. Sandland and D. J. Minchella, Evolution of host resistance to parasite infection in the snail-schistosome-human system,, Journal of Mathematical Biology, 65 (2012), 201. doi: 10.1007/s00285-011-0457-x.

[9]

C. Castillo-Chavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay,, Mathematical Biosciences, 211 (2008), 333. doi: 10.1016/j.mbs.2007.11.001.

[10]

Z. Feng, A. Eppert, F. Milner and D. Minchella, Estimation of parameters governing the transmission dynamics of schistosomes,, Applied Mathematics Letters, 17 (2004), 1105. doi: 10.1016/j.aml.2004.02.002.

[11]

S. G. Ruan, D. M. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission,, Bulletin of Mathematical Biology, 70 (2008), 1098. doi: 10.1007/s11538-007-9292-z.

[12]

Z. M. Chen and L. Zou et.al, Mathematical modelling and control of schistosomiasis in Hubei province, China,, Acta Tropica, 115 (2010), 119.

[13]

P. R. Torgersona, D. H. Williamsb and M. N. Abo-Shehada, Modelling the prevalence of Echinococcus and Taenia species in small ruminants of different ages in northern Jordan,, Veterinary Parasitology, 79 (1998), 35.

[14]

R. M. Mukbel, P. R. Torgerson and M. N. Abo-Shehada, Prevalence of hydatidosis among donkeys in northern Jordan,, Veterinary Parasitology, 88 (2000), 35.

[15]

O. Diekmann and J. A. P. Heesterbeek, Mathematical epidemiology of infectious diseases,, Model building analyis and interpretation, (2000).

[16]

P. van den Driessche and J. Watmough, Reproductive numbers and sub-threshold endemic equilibria for compartmentmodels of disease transmission,, Math. Biosci., 180 (2002), 183. doi: 10.1016/S0025-5564(02)00108-6.

[17]

H. B. Guo and M. Y. Li., Global stability in a mathematical model of tuberculosis,, Canadian applied mathematics quarterly, 14 (2006).

[18]

J. P. LaSalle, "The Stability of Dynamical Systems,", Regional Conference Series in Applied Mathematics, (1976).

[19]

J. Dushoff, W. Huang and C. Castillo-Chavez, Backward bifurcations and batas- trophe in simple models of fatal diseases,, Journal of Mathematical Biology, 36 (1998), 227. doi: 10.1007/s002850050099.

[20]

C. Castillo-Chavez and B. Song, Dynamical models of tuberculosis and their applications,, Math. Biosci. Eng., 1 (2004), 361. doi: 10.3934/mbe.2004.1.361.

[21]

, China Yearbook., \url{http://tongji.cnki.net/kns55/brief/result.aspx?stab=shuzhi}., ().

[22]

S. Marino, I. B. Hogue, C. J. Ray and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology,, Journal of Theoretical Biology, 254 (2008), 178.

[23]

H. Wang and D. L. A, Analysis of pulmonary echinococcosis cyst excision in 136 cases,, Chinese Journal of Misdiagnostics, 11 (2011).

[24]

P. S. Craig, P. Giraudoux, D. Shi and B. Bartholomot, An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China,, Acta Tropica, 77 (2000), 167.

[1]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[2]

Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749

[3]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[4]

Kai Wang, Zhidong Teng, Xueliang Zhang. Dynamical behaviors of an Echinococcosis epidemic model with distributed delays. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1425-1445. doi: 10.3934/mbe.2017074

[5]

Sumei Li, Yicang Zhou. Backward bifurcation of an HTLV-I model with immune response. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 863-881. doi: 10.3934/dcdsb.2016.21.863

[6]

Shu Liao, Jin Wang. Stability analysis and application of a mathematical cholera model. Mathematical Biosciences & Engineering, 2011, 8 (3) : 733-752. doi: 10.3934/mbe.2011.8.733

[7]

Abdul M. Kamareddine, Roger L. Hughes. Towards a mathematical model for stability in pedestrian flows. Networks & Heterogeneous Media, 2011, 6 (3) : 465-483. doi: 10.3934/nhm.2011.6.465

[8]

Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445-458. doi: 10.3934/mbe.2006.3.445

[9]

Benjamin H. Singer, Denise E. Kirschner. Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences & Engineering, 2004, 1 (1) : 81-93. doi: 10.3934/mbe.2004.1.81

[10]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[11]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[12]

Yan'e Wang, Jianhua Wu. Stability of positive constant steady states and their bifurcation in a biological depletion model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 849-865. doi: 10.3934/dcdsb.2011.15.849

[13]

Yaodan Huang, Zhengce Zhang, Bei Hu. Bifurcation from stability to instability for a free boundary tumor model with angiogenesis. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2473-2510. doi: 10.3934/dcds.2019105

[14]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[15]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[16]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[17]

Telma Silva, Adélia Sequeira, Rafael F. Santos, Jorge Tiago. Existence, uniqueness, stability and asymptotic behavior of solutions for a mathematical model of atherosclerosis. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 343-362. doi: 10.3934/dcdss.2016.9.343

[18]

Jianxin Yang, Zhipeng Qiu, Xue-Zhi Li. Global stability of an age-structured cholera model. Mathematical Biosciences & Engineering, 2014, 11 (3) : 641-665. doi: 10.3934/mbe.2014.11.641

[19]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[20]

Attila Dénes, Yoshiaki Muroya, Gergely Röst. Global stability of a multistrain SIS model with superinfection. Mathematical Biosciences & Engineering, 2017, 14 (2) : 421-435. doi: 10.3934/mbe.2017026

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]