2013, 10(2): 445-461. doi: 10.3934/mbe.2013.10.445

Dynamics of an infectious diseases with media/psychology induced non-smooth incidence

1. 

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049

2. 

Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an, 710049, China

3. 

College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, 710062, China

Received  May 2012 Revised  October 2012 Published  January 2013

This paper proposes and analyzes a mathematical model on an infectious disease system with a piecewise smooth incidence rate concerning media/psychological effect. The proposed models extend the classic models with media coverage by including a piecewise smooth incidence rate to represent that the reduction factor because of media coverage depends on both the number of cases and the rate of changes in case number. On the basis of properties of Lambert W function the implicitly defined model has been converted into a piecewise smooth system with explicit definition, and the global dynamic behavior is theoretically examined. The disease-free is globally asymptotically stable when a certain threshold is less than unity, while the endemic equilibrium is globally asymptotically stable for otherwise. The media/psychological impact although does not affect the epidemic threshold, delays the epidemic peak and results in a lower size of outbreak (or equilibrium level of infected individuals).
Citation: Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans, Dynamics and Control,", Oxford University, (1991). Google Scholar

[2]

J. Aubin and A. Cellina, "Differential Inclusion,", Springer-Verlag, (1984). Google Scholar

[3]

A. Banaszuk, On the existence and uniqueness of solutions for implicit linear systems on finite interval,, Circ. Syst. Signal. Pr., 12 (1993), 375. doi: 10.1007/BF01223316. Google Scholar

[4]

S. Banerjee and G. Verghese, "Nonlinear Phenomena in Power Electronics,", IEEE Press, (2001). Google Scholar

[5]

M. D. Bernardo, C. J. Budd, A. R. Champneys, et al., Bifurcations in nonsmooth dynamical systems,, SIAM Review, 50 (2008), 629. doi: 10.1137/050625060. Google Scholar

[6]

M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations,, Int. J. Bifurcat. Chaos, 11 (2001), 1121. Google Scholar

[7]

M. P. Brinn, K. V. Carson, A. J. Esterman, A. B. Chang and B. J. Smith, Mass media interventions for preventing smoking in young people,, Cochrane Db. Syst. Rev., 11 (2010), 1. Google Scholar

[8]

B. Brogliato, "Nonsmooth Mechanics: Models, Dynamics and Control,", Springer-Verlag, (1999). Google Scholar

[9]

R. M. Corless, G. H. Gonnet, et al., On the Lambert W function,, Adv. Comput. Math., 5 (1996), 329. doi: 10.1007/BF02124750. Google Scholar

[10]

J. Cui, Y. Sun and H. Zhu, The impact of media on the spreading and control of infectious disease., J. Dynam. Diff. Eqns., 20 (2008), 31. doi: 10.1007/s10884-007-9075-0. Google Scholar

[11]

J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage,, Rocky Mt. J. Math., 38 (2008), 1323. doi: 10.1216/RMJ-2008-38-5-1323. Google Scholar

[12]

K. Deimling, "Multivalued Differential Equations,", Walter De Gruyter, (1992). doi: 10.1515/9783110874228. Google Scholar

[13]

A. F. Filippov, "Differential Equations with Discontinuous Right-Hand Sides,", Kluwer Academic, (1988). Google Scholar

[14]

S. Funk, M. Salathe and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review,, J. R. Soc. Interface, 7 (2010), 1247. Google Scholar

[15]

S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks,, PNAS, 106 (2009), 6872. Google Scholar

[16]

A. Handel, Jr I. M. Longini and R. Antia, What is the best control strategy for multiple infectious disease outbreaks?,, Proc. R. Soc. B., 274 (2007), 833. Google Scholar

[17]

W. Heemels and B. Brogliato, The complementarity class of hybrid dynamical systems,, European J. Control., 9 (2003), 311. Google Scholar

[18]

J. H. Jones and M. Salathé, Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1),, PLoS ONE, 4 (2009). doi: 10.1371/journal.pone.0008032. Google Scholar

[19]

R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases,, Comput. Math. Methods Med., 8 (2007), 153. doi: 10.1080/17486700701425870. Google Scholar

[20]

Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease,, Int. J. Biomath., 1 (2008), 65. doi: 10.1142/S1793524508000023. Google Scholar

[21]

J. Melin, Does distribution theory contain means for extending Poincaré-Bendixson theory,, J. Math. Anal. Appl., 303 (2004), 81. doi: 10.1016/j.jmaa.2004.06.069. Google Scholar

[22]

G. J. Rubin, H. W. W. Potts and S. Michie, The impact of communications about swine flu (influenza A H1N1v) on public responses to the outbreak: Results from 36 national telephone surveys in the UK,, Health Technol. Assess., 14 (2010), 183. Google Scholar

[23]

C. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting,, Math. Biosci., 230 (2011), 87. doi: 10.1016/j.mbs.2011.01.005. Google Scholar

[24]

J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza,, BMC Public Health, 11 (2011). Google Scholar

[25]

J. M. Tchuenche and C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission,, ISRN Biomathematics, (2012). doi: 10.5402/2012/581274. Google Scholar

[26]

W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58. doi: 10.1016/j.mbs.2005.12.022. Google Scholar

[27]

Y. Xiao, Y. Zhou and S. Tang, Modelling disease spread in dispersal networks at two levels,, IMA. J. Math. appl. Med. Biol., 28 (2010), 227. doi: 10.1093/imammb/dqq007. Google Scholar

[28]

Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonl. Anal. RWA., 11 (2010), 4154. doi: 10.1016/j.nonrwa.2010.05.002. Google Scholar

[29]

Y. Xiao, X. Xu and S. Tang, Sliding mode control of outbreaks of emerging infectious diseases,, Bull. Math. Biol., 74 (2012), 2403. Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans, Dynamics and Control,", Oxford University, (1991). Google Scholar

[2]

J. Aubin and A. Cellina, "Differential Inclusion,", Springer-Verlag, (1984). Google Scholar

[3]

A. Banaszuk, On the existence and uniqueness of solutions for implicit linear systems on finite interval,, Circ. Syst. Signal. Pr., 12 (1993), 375. doi: 10.1007/BF01223316. Google Scholar

[4]

S. Banerjee and G. Verghese, "Nonlinear Phenomena in Power Electronics,", IEEE Press, (2001). Google Scholar

[5]

M. D. Bernardo, C. J. Budd, A. R. Champneys, et al., Bifurcations in nonsmooth dynamical systems,, SIAM Review, 50 (2008), 629. doi: 10.1137/050625060. Google Scholar

[6]

M. di Bernardo, K. H. Johansson and F. Vasca, Self-oscillations and sliding in relay feedback systems: Symmetry and bifurcations,, Int. J. Bifurcat. Chaos, 11 (2001), 1121. Google Scholar

[7]

M. P. Brinn, K. V. Carson, A. J. Esterman, A. B. Chang and B. J. Smith, Mass media interventions for preventing smoking in young people,, Cochrane Db. Syst. Rev., 11 (2010), 1. Google Scholar

[8]

B. Brogliato, "Nonsmooth Mechanics: Models, Dynamics and Control,", Springer-Verlag, (1999). Google Scholar

[9]

R. M. Corless, G. H. Gonnet, et al., On the Lambert W function,, Adv. Comput. Math., 5 (1996), 329. doi: 10.1007/BF02124750. Google Scholar

[10]

J. Cui, Y. Sun and H. Zhu, The impact of media on the spreading and control of infectious disease., J. Dynam. Diff. Eqns., 20 (2008), 31. doi: 10.1007/s10884-007-9075-0. Google Scholar

[11]

J. Cui, X. Tao and H. Zhu, An SIS infection model incorporating media coverage,, Rocky Mt. J. Math., 38 (2008), 1323. doi: 10.1216/RMJ-2008-38-5-1323. Google Scholar

[12]

K. Deimling, "Multivalued Differential Equations,", Walter De Gruyter, (1992). doi: 10.1515/9783110874228. Google Scholar

[13]

A. F. Filippov, "Differential Equations with Discontinuous Right-Hand Sides,", Kluwer Academic, (1988). Google Scholar

[14]

S. Funk, M. Salathe and V. A. A. Jansen, Modelling the influence of human behaviour on the spread of infectious diseases: A review,, J. R. Soc. Interface, 7 (2010), 1247. Google Scholar

[15]

S. Funk, E. Gilad, C. Watkins and V. A. A. Jansen, The spread of awareness and its impact on epidemic outbreaks,, PNAS, 106 (2009), 6872. Google Scholar

[16]

A. Handel, Jr I. M. Longini and R. Antia, What is the best control strategy for multiple infectious disease outbreaks?,, Proc. R. Soc. B., 274 (2007), 833. Google Scholar

[17]

W. Heemels and B. Brogliato, The complementarity class of hybrid dynamical systems,, European J. Control., 9 (2003), 311. Google Scholar

[18]

J. H. Jones and M. Salathé, Early assessment of anxiety and behavioral response to novel swine-origin influenza A(H1N1),, PLoS ONE, 4 (2009). doi: 10.1371/journal.pone.0008032. Google Scholar

[19]

R. Liu, J. Wu and H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases,, Comput. Math. Methods Med., 8 (2007), 153. doi: 10.1080/17486700701425870. Google Scholar

[20]

Y. Liu and J. Cui, The impact of media coverage on the dynamics of infectious disease,, Int. J. Biomath., 1 (2008), 65. doi: 10.1142/S1793524508000023. Google Scholar

[21]

J. Melin, Does distribution theory contain means for extending Poincaré-Bendixson theory,, J. Math. Anal. Appl., 303 (2004), 81. doi: 10.1016/j.jmaa.2004.06.069. Google Scholar

[22]

G. J. Rubin, H. W. W. Potts and S. Michie, The impact of communications about swine flu (influenza A H1N1v) on public responses to the outbreak: Results from 36 national telephone surveys in the UK,, Health Technol. Assess., 14 (2010), 183. Google Scholar

[23]

C. Sun, W. Yang, J. Arino and K. Khan, Effect of media-induced social distancing on disease transmission in a two patch setting,, Math. Biosci., 230 (2011), 87. doi: 10.1016/j.mbs.2011.01.005. Google Scholar

[24]

J. M. Tchuenche, N. Dube, C. P. Bhunu, R. J. Smith and C. T. Bauch, The impact of media coverage on the transmission dynamics of human influenza,, BMC Public Health, 11 (2011). Google Scholar

[25]

J. M. Tchuenche and C. T. Bauch, Dynamics of an infectious disease where media coverage influences transmission,, ISRN Biomathematics, (2012). doi: 10.5402/2012/581274. Google Scholar

[26]

W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58. doi: 10.1016/j.mbs.2005.12.022. Google Scholar

[27]

Y. Xiao, Y. Zhou and S. Tang, Modelling disease spread in dispersal networks at two levels,, IMA. J. Math. appl. Med. Biol., 28 (2010), 227. doi: 10.1093/imammb/dqq007. Google Scholar

[28]

Y. Xiao and S. Tang, Dynamics of infection with nonlinear incidence in a simple vaccination model,, Nonl. Anal. RWA., 11 (2010), 4154. doi: 10.1016/j.nonrwa.2010.05.002. Google Scholar

[29]

Y. Xiao, X. Xu and S. Tang, Sliding mode control of outbreaks of emerging infectious diseases,, Bull. Math. Biol., 74 (2012), 2403. Google Scholar

[1]

Tomás Caraballo, Mohamed El Fatini, Roger Pettersson, Regragui Taki. A stochastic SIRI epidemic model with relapse and media coverage. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3483-3501. doi: 10.3934/dcdsb.2018250

[2]

Jing Ge, Ling Lin, Lai Zhang. A diffusive SIS epidemic model incorporating the media coverage impact in the heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2763-2776. doi: 10.3934/dcdsb.2017134

[3]

Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375

[4]

Wan-Tong Li, Guo Lin, Cong Ma, Fei-Ying Yang. Traveling wave solutions of a nonlocal delayed SIR model without outbreak threshold. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 467-484. doi: 10.3934/dcdsb.2014.19.467

[5]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[6]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[7]

Yan Li, Wan-Tong Li, Guo Lin. Traveling waves of a delayed diffusive SIR epidemic model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1001-1022. doi: 10.3934/cpaa.2015.14.1001

[8]

E. Almaraz, A. Gómez-Corral. On SIR-models with Markov-modulated events: Length of an outbreak, total size of the epidemic and number of secondary infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2153-2176. doi: 10.3934/dcdsb.2018229

[9]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[10]

Shujing Gao, Dehui Xie, Lansun Chen. Pulse vaccination strategy in a delayed sir epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 77-86. doi: 10.3934/dcdsb.2007.7.77

[11]

Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata. Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences & Engineering, 2018, 15 (3) : 653-666. doi: 10.3934/mbe.2018029

[12]

Xia Wang, Shengqiang Liu. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences & Engineering, 2012, 9 (3) : 685-695. doi: 10.3934/mbe.2012.9.685

[13]

Wanbiao Ma, Yasuhiro Takeuchi. Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 671-678. doi: 10.3934/dcdsb.2004.4.671

[14]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[15]

Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867

[16]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[17]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[18]

Min Zhu, Xiaofei Guo, Zhigui Lin. The risk index for an SIR epidemic model and spatial spreading of the infectious disease. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1565-1583. doi: 10.3934/mbe.2017081

[19]

Zhenyuan Guo, Lihong Huang, Xingfu Zou. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 97-110. doi: 10.3934/mbe.2012.9.97

[20]

Hisashi Inaba. Mathematical analysis of an age-structured SIR epidemic model with vertical transmission. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 69-96. doi: 10.3934/dcdsb.2006.6.69

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]