• Previous Article
    Dynamics of an infectious diseases with media/psychology induced non-smooth incidence
  • MBE Home
  • This Issue
  • Next Article
    Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays
2013, 10(2): 463-481. doi: 10.3934/mbe.2013.10.463

On latencies in malaria infections and their impact on the disease dynamics

1. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario, N6A 5B7, Canada

2. 

Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7

Received  February 2012 Revised  August 2012 Published  January 2013

In this paper, we modify the classic Ross-Macdonald model for malaria disease dynamics by incorporating latencies both for human beings and female mosquitoes. One novelty of our model is that we introduce two general probability functions ($P_1(t)$ and $P_2(t)$) to reflect the fact that the latencies differ from individuals to individuals. We justify the well-posedness of the new model, identify the basic reproduction number $\mathcal{R}_0$ for the model and analyze the dynamics of the model. We show that when $\mathcal{R}_0 <1$, the disease free equilibrium $E_0$ is globally asymptotically stable, meaning that the malaria disease will eventually die out; and if $\mathcal{R}_0 >1$, $E_0$ becomes unstable. When $\mathcal{R}_0 >1$, we consider two specific forms for $P_1(t)$ and $P_2(t)$: (i) $P_1(t)$ and $P_2(t)$ are both exponential functions; (ii) $P_1(t)$ and $P_2(t)$ are both step functions. For (i), the model reduces to an ODE system, and for (ii), the long term disease dynamics are governed by a DDE system. In both cases, we are able to show that when $\mathcal{R}_0>1$ then the disease will persist; moreover if there is no recovery ($\gamma_1=0$), then all admissible positive solutions will converge to the unique endemic equilibrium. A significant impact of the latencies is that they reduce the basic reproduction number, regardless of the forms of the distributions.
Citation: Yanyu Xiao, Xingfu Zou. On latencies in malaria infections and their impact on the disease dynamics. Mathematical Biosciences & Engineering, 2013, 10 (2) : 463-481. doi: 10.3934/mbe.2013.10.463
References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991). Google Scholar

[2]

J. L. Aron and R. M. May, The population dynamics of malaria,, in, (1982), 139. Google Scholar

[3]

F. Chanchod and N. F. Britton, Analysis of a vector-bias model on malaria,, Bull. Math. Biol., 73 (2011), 639. doi: 10.1007/s11538-010-9545-0. Google Scholar

[4]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in, (1995), 33. Google Scholar

[5]

O. Diekmann, J. A. P Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $\mathcalR_0$ in models for infectious diseases,, J. Math. Biol., 35 (1990), 503. Google Scholar

[6]

O. Diekmann, J. A. P. Heesterbeek and M. G. Robert, The construction of next generation matrices for compartmental epidemic models,, J. R. Soc. Interface, 7 (2011), 873. Google Scholar

[7]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Can. Appl. Math. Q., 14 (2006), 259. Google Scholar

[8]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793. doi: 10.1090/S0002-9939-08-09341-6. Google Scholar

[9]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993). Google Scholar

[10]

J. M. Heffernan, R. J. Smith and L. M. Wahl, Perspectives on the basic reproduction ratio,, J. R. Soc. Interface, 2 (2005), 281. Google Scholar

[11]

W. M. Hirsch, H. Hanisch and J. P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior,, Comm. Pure Appl. Math., 38 (1985), 733. doi: 10.1002/cpa.3160380607. Google Scholar

[12]

A. Korobeinikov, Lyapunov function and global properties for SIR and SEIR epidemic models,, Math. Med. Biol., 21 (2004), 75. doi: 10.1007/s11538-008-9352-z. Google Scholar

[13]

A. Korobeinikov and P. K. Maini, A lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57. doi: 10.3934/mbe.2004.1.57. Google Scholar

[14]

Y. Lou and X-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011), 543. doi: 10.1007/s00285-010-0346-8. Google Scholar

[15]

R. K. Miller, "Nonlinear Volterra Integral Equations,", Benjamin, (1971). Google Scholar

[16]

G. Macdonald, The analysis of sporozoite rate,, Trop. Dis. Bull., 49 (1952), 569. Google Scholar

[17]

G. Macdonald, Epidemiological basis of malaria control,, Bull. WHO, 15 (1956), 613. Google Scholar

[18]

G. Macdonald, "The Epidemiology And Control Of Malaria,", Oxford University Press, (1957). Google Scholar

[19]

R. Ross, "The Prevention Of Malaria,", J. Murray, (1910). Google Scholar

[20]

S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for Malaria transmission,, Bull. Math. Biol., 70 (2008), 1098. doi: 10.1007/s11538-007-9292-z. Google Scholar

[21]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", \textbf{41}. AMS, 41 (1995). Google Scholar

[22]

A. M. Talman, O. Domarle, F. McKenzie, F. Ariey and V. Robert, Gametocytogenesis: the puberty of Plasmodium falciparum,, Malaria Journal, 3 (2004). Google Scholar

[23]

H. R. Thieme, "Mathematics In Population Biology,", Princeton University Press, (2003). Google Scholar

[24]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407. doi: 10.1137/0524026. Google Scholar

[25]

P. van den Driessche, L. Wang and X. Zou, Modeling diseases with latency and relapse,, Math. Biosci. Eng., 4 (2007), 205. doi: 10.3934/mbe.2007.4.205. Google Scholar

[26]

P. van den Drissche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, "Infectious Diseases of Humans: Dynamics and Control,", Oxford University Press, (1991). Google Scholar

[2]

J. L. Aron and R. M. May, The population dynamics of malaria,, in, (1982), 139. Google Scholar

[3]

F. Chanchod and N. F. Britton, Analysis of a vector-bias model on malaria,, Bull. Math. Biol., 73 (2011), 639. doi: 10.1007/s11538-010-9545-0. Google Scholar

[4]

C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models,, in, (1995), 33. Google Scholar

[5]

O. Diekmann, J. A. P Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $\mathcalR_0$ in models for infectious diseases,, J. Math. Biol., 35 (1990), 503. Google Scholar

[6]

O. Diekmann, J. A. P. Heesterbeek and M. G. Robert, The construction of next generation matrices for compartmental epidemic models,, J. R. Soc. Interface, 7 (2011), 873. Google Scholar

[7]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Can. Appl. Math. Q., 14 (2006), 259. Google Scholar

[8]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793. doi: 10.1090/S0002-9939-08-09341-6. Google Scholar

[9]

J. K. Hale and S. M. Verduyn Lunel, "Introduction to Functional Differential Equations,", Springer-Verlag, (1993). Google Scholar

[10]

J. M. Heffernan, R. J. Smith and L. M. Wahl, Perspectives on the basic reproduction ratio,, J. R. Soc. Interface, 2 (2005), 281. Google Scholar

[11]

W. M. Hirsch, H. Hanisch and J. P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior,, Comm. Pure Appl. Math., 38 (1985), 733. doi: 10.1002/cpa.3160380607. Google Scholar

[12]

A. Korobeinikov, Lyapunov function and global properties for SIR and SEIR epidemic models,, Math. Med. Biol., 21 (2004), 75. doi: 10.1007/s11538-008-9352-z. Google Scholar

[13]

A. Korobeinikov and P. K. Maini, A lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence,, Math. Biosci. Eng., 1 (2004), 57. doi: 10.3934/mbe.2004.1.57. Google Scholar

[14]

Y. Lou and X-Q. Zhao, A reaction-diffusion malaria model with incubation period in the vector population,, J. Math. Biol., 62 (2011), 543. doi: 10.1007/s00285-010-0346-8. Google Scholar

[15]

R. K. Miller, "Nonlinear Volterra Integral Equations,", Benjamin, (1971). Google Scholar

[16]

G. Macdonald, The analysis of sporozoite rate,, Trop. Dis. Bull., 49 (1952), 569. Google Scholar

[17]

G. Macdonald, Epidemiological basis of malaria control,, Bull. WHO, 15 (1956), 613. Google Scholar

[18]

G. Macdonald, "The Epidemiology And Control Of Malaria,", Oxford University Press, (1957). Google Scholar

[19]

R. Ross, "The Prevention Of Malaria,", J. Murray, (1910). Google Scholar

[20]

S. Ruan, D. Xiao and J. C. Beier, On the delayed Ross-Macdonald model for Malaria transmission,, Bull. Math. Biol., 70 (2008), 1098. doi: 10.1007/s11538-007-9292-z. Google Scholar

[21]

H. L. Smith, "Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,", \textbf{41}. AMS, 41 (1995). Google Scholar

[22]

A. M. Talman, O. Domarle, F. McKenzie, F. Ariey and V. Robert, Gametocytogenesis: the puberty of Plasmodium falciparum,, Malaria Journal, 3 (2004). Google Scholar

[23]

H. R. Thieme, "Mathematics In Population Biology,", Princeton University Press, (2003). Google Scholar

[24]

H. R. Thieme, Persistence under relaxed point-dissipativity (with application to an endemic model),, SIAM J. Math. Anal., 24 (1993), 407. doi: 10.1137/0524026. Google Scholar

[25]

P. van den Driessche, L. Wang and X. Zou, Modeling diseases with latency and relapse,, Math. Biosci. Eng., 4 (2007), 205. doi: 10.3934/mbe.2007.4.205. Google Scholar

[26]

P. van den Drissche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[1]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[2]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-12. doi: 10.3934/dcdsb.2019166

[3]

Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595

[4]

Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455

[5]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[6]

Rafael Obaya, Ana M. Sanz. Persistence in non-autonomous quasimonotone parabolic partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3947-3970. doi: 10.3934/dcdsb.2018338

[7]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[8]

Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239

[9]

Paul L. Salceanu, H. L. Smith. Lyapunov exponents and persistence in discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 187-203. doi: 10.3934/dcdsb.2009.12.187

[10]

Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73

[11]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[12]

Jinliang Wang, Jingmei Pang, Toshikazu Kuniya. A note on global stability for malaria infections model with latencies. Mathematical Biosciences & Engineering, 2014, 11 (4) : 995-1001. doi: 10.3934/mbe.2014.11.995

[13]

Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565

[14]

Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457

[15]

Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi. Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences & Engineering, 2012, 9 (2) : 297-312. doi: 10.3934/mbe.2012.9.297

[16]

Junyuan Yang, Yuming Chen, Jiming Liu. Stability analysis of a two-strain epidemic model on complex networks with latency. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2851-2866. doi: 10.3934/dcdsb.2016076

[17]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[18]

Guihong Fan, Yijun Lou, Horst R. Thieme, Jianhong Wu. Stability and persistence in ODE models for populations with many stages. Mathematical Biosciences & Engineering, 2015, 12 (4) : 661-686. doi: 10.3934/mbe.2015.12.661

[19]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[20]

Luis Barreira, Claudia Valls. Stability of nonautonomous equations and Lyapunov functions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2631-2650. doi: 10.3934/dcds.2013.33.2631

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]