2013, 10(3): 579-590. doi: 10.3934/mbe.2013.10.579

Identifying preseizure state in intracranial EEG data using diffusion kernels

1. 

101 AKW, 51 Prospect St. New Haven, CT 06511, United States

2. 

103 AKW, 51 Prospect St. New Haven, CT 06511, United States

3. 

716 LLCI, 15 York St. New Haven, CT 06520, United States

4. 

108A AKW, 51 Prospect St. New Haven, CT 06511, United States

Received  July 2012 Revised  December 2012 Published  April 2013

The goal of this study is to identify preseizure changes in intracranial EEG (icEEG). A novel approach based on the recently developed diffusion map framework, which is considered to be one of the leading manifold learning methods, is proposed. Diffusion mapping provides dimensionality reduction of the data as well as pattern recognition that can be used to distinguish different states of the patient, for example, interictal and preseizure. A new algorithm, which is an extension of diffusion maps, is developed to construct coordinates that generate efficient geometric representations of the complex structures in the icEEG data. In addition, this method is adapted to the icEEG data and enables the extraction of the underlying brain activity.
    The algorithm is tested on icEEG data recorded from several electrode contacts from a patient being evaluated for possible epilepsy surgery at the Yale-New Haven Hospital. Numerical results show that the proposed approach provides a distinction between interictal and preseizure states.
Citation: Dominique Duncan, Ronen Talmon, Hitten P. Zaveri, Ronald R. Coifman. Identifying preseizure state in intracranial EEG data using diffusion kernels. Mathematical Biosciences & Engineering, 2013, 10 (3) : 579-590. doi: 10.3934/mbe.2013.10.579
References:
[1]

R. G. Andrzejak, F. Mormann, R. Kreuz, C. Rieke, A. Kraskov, C. E. Elger and K. Lehnertz, Testing the null hypothesis of the nonexistence of a preseizure state,, Phys. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.010901.

[2]

J. Britz, D. Van De Ville and C. M. Michel, BOLD correlates of EEG topography reveal rapid resting-state network dynamics,, NeuroImage, 52 (2010), 1162. doi: 10.1016/j.neuroimage.2010.02.052.

[3]

R. R. Coifman and S. Lafon, Diffusion maps,, Appl. Comp. Harm. Anal., 21 (2006), 5. doi: 10.1016/j.acha.2006.04.006.

[4]

D. Duncan, R. B. Duckrow, R. R. Coifman and H. P. Zaveri, Intracranial EEG Evaluation of a Resting State Network,, Challenges of Modern Technology, 1 (2010), 27.

[5]

M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny, K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jefferys, G. Worrell, M. Le Van Quyen, S. J. Schiff and F. Mormann, Controversies in epilepsy: Debates held during the fourth international workshop on seizure prediction,, Epilepsy and Behavior, 19 (2010), 4. doi: 10.1016/j.yebeh.2010.06.009.

[6]

I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny and S. S. Spencer, Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies,, Epilepsia, 50 (2009), 2575. doi: 10.1111/j.1528-1167.2009.02258.x.

[7]

W. A. Hauser, J. F. Annegers and W. A. Rocca, Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota,, Mayo. Clin. Proc., 71 (1996), 576. doi: 10.4065/71.6.576.

[8]

D. Kushnir, A. Haddad and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification,, Appl. Comp. Harm. Anal., 32 (2012), 280. doi: 10.1016/j.acha.2011.06.002.

[9]

P. Kwan and M. J. Brodie, Early identification of refractory epilepsy,, N. Engl. J. Med., 342 (2000), 314. doi: 10.1056/NEJM200002033420503.

[10]

F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road,, Brain, 130 (2007), 314. doi: 10.1093/brain/awl241.

[11]

X. Papademetris, A. P. Jackowski, R. T. Schultz, L. H. Staib and J. S. Duncan, Integrated intensity and point-feature non-rigid registration,, in, (2004), 763.

[12]

M. R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis,, IEEE Trans. Signal Process, ASSP-28 (): 55. doi: 10.1109/TASSP.1980.1163359.

[13]

A. Schulze-Bonhage, H. Feldwisch-Drentrup and M. Ihle, Epilepsy and behavior,, Elsevier, 22 (2011). doi: 10.1016/j.yebeh.2003.11.021.

[14]

A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps,, Appl. Comp. Harm. Anal., 25 (2008), 226. doi: 10.1016/j.acha.2007.11.001.

[15]

E. Susman, Brain stimulation reduces seizures in refractory adult epilepsy,, Neurology Today, 9 (2009), 22. doi: 10.1097/01.NT.0000345158.91024.42.

[16]

R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking,, submitted to PNAS, (2012).

[17]

R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels,, IEEE Trans. Signal Process, 60 (2012). doi: 10.1109/TSP.2011.2177973.

show all references

References:
[1]

R. G. Andrzejak, F. Mormann, R. Kreuz, C. Rieke, A. Kraskov, C. E. Elger and K. Lehnertz, Testing the null hypothesis of the nonexistence of a preseizure state,, Phys. Rev. E, 67 (2003). doi: 10.1103/PhysRevE.67.010901.

[2]

J. Britz, D. Van De Ville and C. M. Michel, BOLD correlates of EEG topography reveal rapid resting-state network dynamics,, NeuroImage, 52 (2010), 1162. doi: 10.1016/j.neuroimage.2010.02.052.

[3]

R. R. Coifman and S. Lafon, Diffusion maps,, Appl. Comp. Harm. Anal., 21 (2006), 5. doi: 10.1016/j.acha.2006.04.006.

[4]

D. Duncan, R. B. Duckrow, R. R. Coifman and H. P. Zaveri, Intracranial EEG Evaluation of a Resting State Network,, Challenges of Modern Technology, 1 (2010), 27.

[5]

M. G. Frei, H. P. Zaveri, S. Arthurs, G. K. Bergey, C. C. Jouny, K. Lehnertz, J. Gotman, I. Osorio, T. I. Netoff, W. J. Freeman, J. Jefferys, G. Worrell, M. Le Van Quyen, S. J. Schiff and F. Mormann, Controversies in epilepsy: Debates held during the fourth international workshop on seizure prediction,, Epilepsy and Behavior, 19 (2010), 4. doi: 10.1016/j.yebeh.2010.06.009.

[6]

I. I. Goncharova, H. P. Zaveri, R. B. Duckrow, E. J. Novotny and S. S. Spencer, Spatial distribution of intracranially recorded spikes in medial and lateral temporal epilepsies,, Epilepsia, 50 (2009), 2575. doi: 10.1111/j.1528-1167.2009.02258.x.

[7]

W. A. Hauser, J. F. Annegers and W. A. Rocca, Descriptive epidemiology of epilepsy: Contributions of population-based studies from Rochester, Minnesota,, Mayo. Clin. Proc., 71 (1996), 576. doi: 10.4065/71.6.576.

[8]

D. Kushnir, A. Haddad and R. R. Coifman, Anisotropic diffusion on sub-manifolds with application to earth structure classification,, Appl. Comp. Harm. Anal., 32 (2012), 280. doi: 10.1016/j.acha.2011.06.002.

[9]

P. Kwan and M. J. Brodie, Early identification of refractory epilepsy,, N. Engl. J. Med., 342 (2000), 314. doi: 10.1056/NEJM200002033420503.

[10]

F. Mormann, R. G. Andrzejak, C. E. Elger and K. Lehnertz, Seizure prediction: the long and winding road,, Brain, 130 (2007), 314. doi: 10.1093/brain/awl241.

[11]

X. Papademetris, A. P. Jackowski, R. T. Schultz, L. H. Staib and J. S. Duncan, Integrated intensity and point-feature non-rigid registration,, in, (2004), 763.

[12]

M. R. Portnoff, Time-frequency representation of digital signals and systems based on short-time Fourier analysis,, IEEE Trans. Signal Process, ASSP-28 (): 55. doi: 10.1109/TASSP.1980.1163359.

[13]

A. Schulze-Bonhage, H. Feldwisch-Drentrup and M. Ihle, Epilepsy and behavior,, Elsevier, 22 (2011). doi: 10.1016/j.yebeh.2003.11.021.

[14]

A. Singer and R. R. Coifman, Non-linear independent component analysis with diffusion maps,, Appl. Comp. Harm. Anal., 25 (2008), 226. doi: 10.1016/j.acha.2007.11.001.

[15]

E. Susman, Brain stimulation reduces seizures in refractory adult epilepsy,, Neurology Today, 9 (2009), 22. doi: 10.1097/01.NT.0000345158.91024.42.

[16]

R. Talmon and R. R. Coifman, Differential stochastic sensing: intrinsic modeling of random time series with applications to nonlinear tracking,, submitted to PNAS, (2012).

[17]

R. Talmon, D. Kushnir, R. R. Coifman, I. Cohen and S. Gannot, Parametrization of linear systems using diffusion kernels,, IEEE Trans. Signal Process, 60 (2012). doi: 10.1109/TSP.2011.2177973.

[1]

Dominique Duncan, Paul Vespa, Arthur W. Toga. Detecting features of epileptogenesis in EEG after TBI using unsupervised diffusion component analysis. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 161-172. doi: 10.3934/dcdsb.2018010

[2]

Marko Filipović, Ivica Kopriva. A comparison of dictionary based approaches to inpainting and denoising with an emphasis to independent component analysis learned dictionaries. Inverse Problems & Imaging, 2011, 5 (4) : 815-841. doi: 10.3934/ipi.2011.5.815

[3]

Dominique Duncan, Thomas Strohmer. Classification of Alzheimer's disease using unsupervised diffusion component analysis. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1119-1130. doi: 10.3934/mbe.2016033

[4]

Hamed Azizollahi, Marion Darbas, Mohamadou M. Diallo, Abdellatif El Badia, Stephanie Lohrengel. EEG in neonates: Forward modeling and sensitivity analysis with respect to variations of the conductivity. Mathematical Biosciences & Engineering, 2018, 15 (4) : 905-932. doi: 10.3934/mbe.2018041

[5]

Xiao-Qian Jiang, Lun-Chuan Zhang. Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-927. doi: 10.3934/dcdss.2019061

[6]

Amadeu Delshams, Rodrigo G. Schaefer. Arnold diffusion for a complete family of perturbations with two independent harmonics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6047-6072. doi: 10.3934/dcds.2018261

[7]

Hui Zhang, Jian-Feng Cai, Lizhi Cheng, Jubo Zhu. Strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2012, 6 (2) : 357-372. doi: 10.3934/ipi.2012.6.357

[8]

G. A. Braga, Frederico Furtado, Jussara M. Moreira, Leonardo T. Rolla. Renormalization group analysis of nonlinear diffusion equations with time dependent coefficients: Analytical results. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 699-715. doi: 10.3934/dcdsb.2007.7.699

[9]

Costică Moroşanu. Stability and errors analysis of two iterative schemes of fractional steps type associated to a nonlinear reaction-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-21. doi: 10.3934/dcdss.2020089

[10]

Peter Ashwin, Xin-Chu Fu. Symbolic analysis for some planar piecewise linear maps. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1533-1548. doi: 10.3934/dcds.2003.9.1533

[11]

Bilal Saad, Mazen Saad. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 317-346. doi: 10.3934/dcdss.2014.7.317

[12]

Qingshan You, Qun Wan, Yipeng Liu. A short note on strongly convex programming for exact matrix completion and robust principal component analysis. Inverse Problems & Imaging, 2013, 7 (1) : 305-306. doi: 10.3934/ipi.2013.7.305

[13]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[14]

Yasumasa Nishiura, Takashi Teramoto, Xiaohui Yuan. Heterogeneity-induced spot dynamics for a three-component reaction-diffusion system. Communications on Pure & Applied Analysis, 2012, 11 (1) : 307-338. doi: 10.3934/cpaa.2012.11.307

[15]

Nejib Mahmoudi. Single-point blow-up for a multi-component reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 209-230. doi: 10.3934/dcds.2018010

[16]

Shuangquan Xie, Theodore Kolokolnikov. Oscillations of many interfaces in the near-shadow regime of two-component reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 959-975. doi: 10.3934/dcdsb.2016.21.959

[17]

Manisha Pujari, Rushed Kanawati. Link prediction in multiplex networks. Networks & Heterogeneous Media, 2015, 10 (1) : 17-35. doi: 10.3934/nhm.2015.10.17

[18]

Jorge A. Esquivel-Avila. Qualitative analysis of a nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 787-804. doi: 10.3934/dcds.2004.10.787

[19]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[20]

Angelo Morro. Nonlinear diffusion equations in fluid mixtures. Evolution Equations & Control Theory, 2016, 5 (3) : 431-448. doi: 10.3934/eect.2016012

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]