2013, 10(3): 861-872. doi: 10.3934/mbe.2013.10.861

A simple model of carcinogenic mutations with time delay and diffusion

1. 

Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw

2. 

College of Inter-faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Zwirki i Wigury 93, 02-089 Warsaw, Poland

Received  June 2012 Revised  August 2012 Published  April 2013

In the paper we consider a system of delay differential equations (DDEs) of Lotka-Volterra type with diffusion reflecting mutations from normal to malignant cells. The model essentially follows the idea of Ahangar and Lin (2003) where mutations in three different environmental conditions, namely favorable, competitive and unfavorable, were considered. We focus on the unfavorable conditions that can result from a given treatment, e.g. chemotherapy. Included delay stands for the interactions between benign and other cells. We compare the dynamics of ODEs system, the system with delay and the system with delay and diffusion. We mainly focus on the dynamics when a positive steady state exists. The system which is globally stable in the case without the delay and diffusion is destabilized by increasing delay, and therefore the underlying kinetic dynamics becomes oscillatory due to a Hopf bifurcation for appropriate values of the delay. This suggests the occurrence of spatially non-homogeneous periodic solutions for the system with the delay and diffusion.
Citation: Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk. A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences & Engineering, 2013, 10 (3) : 861-872. doi: 10.3934/mbe.2013.10.861
References:
[1]

J. A. Adam and N. Bellomo, "A Survey of Models for Tumor-imune System Synamics,", Birkhäuser, (1997).

[2]

R. Ahangar and X. B. Lin, Multistage evolutionary model for carcinogenesis mutations,, Electron. J. Diff. Eqns., 10 (2003), 33.

[3]

P. K. Brazhnik and J. J. Tyson, On travelling wave solutions of Fisher's equation in two spatial dimensions,, SIAM J. Appl. Math., 60 (1999), 371. doi: 10.1137/S0036139997325497.

[4]

K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations,, Funkcj. Ekvacioj, 29 (1986), 77.

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433. doi: 10.1006/jmaa.2000.7182.

[6]

U. Foryś, Comparison of the models for carcinogenesis mutations - one-stage case,, in, (2004), 13.

[7]

U. Foryś, Time delays in one-stage models for carcinogenesis mutations,, in, (2005), 13.

[8]

U. Foryś, Stability analysis and comparison of the models for carcinogenesis mutations in the case of two stages of mutations,, J. Appl. Anal., 11 (2005), 200. doi: 10.1515/JAA.2005.283.

[9]

U. Foryś, Multi-dimensional Lotka-Volterra system for carcinogenesis mutations,, Math. Meth. Appl. Sci., 32 (2009), 2287. doi: 10.1002/mma.1137.

[10]

J. K. Hale, "Theory of Functional Differential Equations,", Springer, (1977).

[11]

J. D. Murray, "Mathematical Biology I: An Introduction,", Springer, (2002).

[12]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", Springer, (2003).

[13]

A. S. Perelson and G. Weisbuch, Immunology for physicists,, Rev. Mod. Phys., 69 (1997), 1219. doi: 10.1103/RevModPhys.69.1219.

show all references

References:
[1]

J. A. Adam and N. Bellomo, "A Survey of Models for Tumor-imune System Synamics,", Birkhäuser, (1997).

[2]

R. Ahangar and X. B. Lin, Multistage evolutionary model for carcinogenesis mutations,, Electron. J. Diff. Eqns., 10 (2003), 33.

[3]

P. K. Brazhnik and J. J. Tyson, On travelling wave solutions of Fisher's equation in two spatial dimensions,, SIAM J. Appl. Math., 60 (1999), 371. doi: 10.1137/S0036139997325497.

[4]

K. L. Cooke and P. van den Driessche, On zeroes of some transcendental equations,, Funkcj. Ekvacioj, 29 (1986), 77.

[5]

T. Faria, Stability and bifurcation for a delayed predator-prey model and the effect of diffusion,, J. Math. Anal. Appl., 254 (2001), 433. doi: 10.1006/jmaa.2000.7182.

[6]

U. Foryś, Comparison of the models for carcinogenesis mutations - one-stage case,, in, (2004), 13.

[7]

U. Foryś, Time delays in one-stage models for carcinogenesis mutations,, in, (2005), 13.

[8]

U. Foryś, Stability analysis and comparison of the models for carcinogenesis mutations in the case of two stages of mutations,, J. Appl. Anal., 11 (2005), 200. doi: 10.1515/JAA.2005.283.

[9]

U. Foryś, Multi-dimensional Lotka-Volterra system for carcinogenesis mutations,, Math. Meth. Appl. Sci., 32 (2009), 2287. doi: 10.1002/mma.1137.

[10]

J. K. Hale, "Theory of Functional Differential Equations,", Springer, (1977).

[11]

J. D. Murray, "Mathematical Biology I: An Introduction,", Springer, (2002).

[12]

J. D. Murray, "Mathematical Biology II: Spatial Models and Biomedical Applications,", Springer, (2003).

[13]

A. S. Perelson and G. Weisbuch, Immunology for physicists,, Rev. Mod. Phys., 69 (1997), 1219. doi: 10.1103/RevModPhys.69.1219.

[1]

Urszula Foryś, Beata Zduniak. Two-stage model of carcinogenic mutations with the influence of delays. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2501-2519. doi: 10.3934/dcdsb.2014.19.2501

[2]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[3]

Zhao-Xing Yang, Guo-Bao Zhang, Ge Tian, Zhaosheng Feng. Stability of non-monotone non-critical traveling waves in discrete reaction-diffusion equations with time delay. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 581-603. doi: 10.3934/dcdss.2017029

[4]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[5]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[6]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[7]

Elena Braverman, Sergey Zhukovskiy. Absolute and delay-dependent stability of equations with a distributed delay. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2041-2061. doi: 10.3934/dcds.2012.32.2041

[8]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure & Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[9]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[10]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[11]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[12]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[13]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[14]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[15]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[16]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

[17]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[18]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

[19]

Ismael Maroto, Carmen Núñez, Rafael Obaya. Exponential stability for nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3167-3197. doi: 10.3934/dcdsb.2017169

[20]

Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143

2017 Impact Factor: 1.23

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]