Citation: |
[1] |
S. Blanes, F. Casas, J. A. Oteo and J. Ros, The magnus expansion and some of its applications, Physics Reports, 470 (2009), 151-238.doi: 10.1016/j.physrep.2008.11.001. |
[2] |
J. H. Bollmann and B. Sakmann, Control of synaptic strength and timing by the release-site $Ca^{2+}$ signal, Nat. Neurosci., 8 (2005), 426-434. |
[3] |
J. H. Bollmann, B. Sakmann and J. G. G. Borst, Calcium sensitivity of glutamate release in a calyx-type terminal, Science, 289 (2000), 953-957.doi: 10.1126/science.289.5481.953. |
[4] |
J. G. G. Borst and B. Sakmann, Calcium influx and transmitter release in a fast cns synapse, Nature, 383 (1996), 431-434.doi: 10.1038/383431a0. |
[5] |
J. G. G. Borst and B. Sakmann, Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem, J. Physiol., 506 (1998), 143-157.doi: 10.1111/j.1469-7793.1998.143bx.x. |
[6] |
A. Gil and V. González-Vélez, Exocytotic dynamics and calcium cooperativity effects in the calyx of held synapse: A modelling study, J. Comp. Neurosci., 28 (2010), 65-76.doi: 10.1007/s10827-009-0187-x. |
[7] |
A. Gil and J. Segura, Ca3D: A Monte Carlo code to simulate 3D buffered calcium diffusion of ions in sub-membrane domains, Comput. Phys. Commun., 136 (2001), 269-293. |
[8] |
A. Gil, J. Segura, J. A. G. Pertusa and B. Soria, Monte Carlo simulation of 3-D buffered $Ca^{2+}$ diffusion in neuroendocrine cells, Biophys. J., 78 (2000), 13-33. |
[9] |
Y. Han, P. S. Kaeser, T. C. Südhof and R. Schneggenburger, Rim determines Ca(2+) channel density and vesicle docking at the presynaptic active zone, Neuron., 69 (2011), 304-316. |
[10] |
S. Hefft and P. Jonas P, Asynchronous gaba release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse, Nat. Neurosci., 8 (2005), 1319-1328.doi: 10.1038/nn1542. |
[11] |
O. Kochubey and R. Schneggenburger, Regulation of transmitter release by $Ca^{2+}$ and synaptotagmin: Insights from a large cns synapse, Trends Neurosci., 34 (2011), 237-246. |
[12] |
O. Kochubey and R. Schneggenburger, Synaptotagmin increases the dynamic range of synapses by driving $Ca^{2+}$-evoked release and by clamping a near-linear remaining $Ca^{2+}$ sensor, Neuron., 69 (2011), 736-748. |
[13] |
X. L. Lou, V. Scheuss and R. Schneggenburger, Allosteric modulation of the presynaptic $Ca^{2+}$ sensor for vesicle fusion, Nature, 435 (2005), 497-501. |
[14] |
W. Magnus, On the exponential solution of differential equations for a linear operator, Commun. Pure Appl. Math., 7 (1954), 649-673.doi: 10.1002/cpa.3160070404. |
[15] |
C. J. Meinrenken, J. G. G. Borst and B. Sakmann, Calcium secretion coupling at calyx of held goverened by nonuniform channel-vesicle topography, J. Neurosci., 22 (2002), 1648-1667. |
[16] |
C. J. Meinrenken, J. G. G. Borst and B. Sakmann, Local routes revisited: The space and time dependence of the $Ca^{2+}$ signal for phasic transmitter release at the rat calyx of held, J. Physiol., 547 (2003), 665-689. |
[17] |
M. Müller, F. Felmy, B Schwaller and R Schneggenburger, Parvalbumin Is a Mobile Presynaptic $Ca^{2+}$ Buffer in the Calyx of Held that Accelerates the Decay of $Ca^{2+}$ and Short-Term Facilitation, The Journal of Neuroscience, 27 (2007), 2261-2271. |
[18] |
K. Sātzler and et al., Three-dimensional reconstruction of a calyx of held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body, J. Neurosci., 22 (2002), 10567-10579. |
[19] |
R. Schneggenburger and E. Neher, Intracellular calcium dependence of transmitter release rates at a fast central synapse, Nature, 406 (2000), 889-893. |
[20] |
J. Segura, A. Gil and B. Soria, Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters, Biophys. J., 79 (2000), 1771-1786.doi: 10.1016/S0006-3495(00)76429-0. |
[21] |
J. Sun, Z. P. Pang, D. Qin, A. T. Fahim, R. Adachi and T. C. Sudhof, A dual-$Ca^{2+}$-sensor model for neurotransmitter release in a central synapse, Nature, 450 (2007), 676-683. |
[22] |
L.-Y. Wang, E. Neher and H. Taschenberger, Synaptic vesicles in mature calyx of held synapses sense higher nanodomain calcium concentrations during action potential-evoked glutamate release, J. Neurosci., 28 (2008), 14450-14458.doi: 10.1523/JNEUROSCI.4245-08.2008. |