\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Epidemic models for complex networks with demographics

Abstract / Introduction Related Papers Cited by
  • In this paper, we propose and study network epidemic models with demographics for disease transmission. We obtain the formula of the basic reproduction number $R_{0}$ of infection for an SIS model with births or recruitment and death rate. We prove that if $R_{0}\leq1$, infection-free equilibrium of SIS model is globally asymptotically stable; if $R_{0}>1$, there exists a unique endemic equilibrium which is globally asymptotically stable. It is also found that demographics has great effect on basic reproduction number $R_{0}$. Furthermore, the degree distribution of population varies with time before it reaches the stationary state.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. M. Anderson and R. M. May, Infectious Diseases of Humans, Oxford University Press, Oxford, 1992.

    [2]

    A.-L. Barabasi and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-511.doi: 10.1126/science.286.5439.509.

    [3]

    M. Barthelemy, A. Barrat, R. Pastor-Satorras and A. Vespignani, Dynamical patterns of epidemic outbreaks in complex heterogeneous networks, Journal of Theoretical Biology, 235 (2005), 275-288.doi: 10.1016/j.jtbi.2005.01.011.

    [4]

    E. Ben-Naim and P. L. Krapivsky, Addition-deletion networks, J. Phys. A: Math. Theor., 40 (2007), 8607-8619.doi: 10.1088/1751-8113/40/30/001.

    [5]

    M. Boguna, R. Pastor-Satorras and A. Vespignani, Epidemic spreading in complex networks with degree correlations, e-print cond-mat/0301149, (2003).

    [6]

    S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size, J. Math. Biol., 28 (1990), 257-270.doi: 10.1007/BF00178776.

    [7]

    C. Castillo-Chavez and H. R. Thieme, Asymptotically autonomous epidemic models, in Mathematical Population Dynamics: Analysis of Heterogeneity (eds. O. Arino, D. Axelrod, M. Kimmel and M. Langlais), Theory of Epidemics, 1, Wuerz, Winnipeg, 1993, 33-50.

    [8]

    K. Emrah, Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions, Applied Mathematics and Computation, 197 (2008), 345-357.doi: 10.1016/j.amc.2007.07.046.

    [9]

    L. Q. Gao and H. W. Hethcote, Disease transmission models with density-dependent demographics, J. Math. Biol., 30 (1992), 717-731.doi: 10.1007/BF00173265.

    [10]

    L. Hufnagel, D. Brockmann and T. Geisel, Forecast and control of epidemics in a globalized world, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 15124.doi: 10.1073/pnas.0308344101.

    [11]

    Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease, J. Math. Anal. Appl., 308 (2005), 343-364.doi: 10.1016/j.jmaa.2005.01.034.

    [12]

    J. Joo and J. L. Lebowitz, Behavior of susceptible-infected-susceptible epidemics on heterogeneous networks with saturation, Phys. Rev. E, 69 (2004), 066105.doi: 10.1103/PhysRevE.69.066105.

    [13]

    M. J. Keeling and K. T. D. Eames, Networks and epidemic models, J. R. Soc. Interface, 2 (2005), 295-307.doi: 10.1098/rsif.2005.0051.

    [14]

    M. J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, 2007.

    [15]

    W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700-711.doi: 10.1098/rspa.1927.0118.

    [16]

    I. Z. Kiss, D. M. Green and R. R. Kao, Heterogeneity and multiple of transmission on final epidemic size, Mathematical Biosciences, 203 (2006), 124-136.doi: 10.1016/j.mbs.2006.03.002.

    [17]

    I. Z. Kiss, P. L. Simon and R. R. Kao, A contact-network-based formulation of a preferential mixing model, Bulletin of Mathematical Biology, 71 (2009), 888-905.doi: 10.1007/s11538-008-9386-2.

    [18]

    J. Lindquist, J. Ma, P. van den Driessche and F. H. Willeboords, Network evolution by different rewiring schemes, Physica D, 238 (2009), 370-378.doi: 10.1016/j.physd.2008.10.016.

    [19]

    Z. Ma and J. Li, Dynamical Modeling and Anaylsis of Epidemics, World Scientific, 2009.

    [20]

    R. M. May and A. L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E, 64 (2001), 066112.doi: 10.1103/PhysRevE.64.066112.

    [21]

    Y. Moreno, R. Pastor-Satorras and A. Vespignani, Epidemic outbreaks in complex heterogeneous networks, Eur. Phys. J. B, 26 (2002), 521-529.doi: 10.1140/epjb/e20020122.

    [22]

    R. Olinky and L. Stone, Unexpected epidemic thresholds in heterogeneous networks: The role of disease transmission, Phys. Rev. E, 70 (2004), 030902.doi: 10.1103/PhysRevE.70.030902.

    [23]

    R. Pastor-Satorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Phys. Rev. E, 63 (2001), 066117.doi: 10.1103/PhysRevE.63.066117.

    [24]

    R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Let., 86 (2001), 3200.doi: 10.1103/PhysRevLett.86.3200.

    [25]

    M. G. Roberta, An SEI model with density-dependent demographics and epidemiology, IMA Journal of Mathematics Applied in Medicine & Biology, 13 (1996), 245-257.doi: 10.1093/imammb13.4.245.

    [26]

    L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks, Phys. Rev. E, 77 (2008), 066101.doi: 10.1103/PhysRevE.77.066101.

    [27]

    H. L. Smith, On the asymptotic behavior of a class of deterministic models of cooperating species, SIAM J. Appl. Math., 46 (1986), 368-375.doi: 10.1137/0146025.

    [28]

    H. R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mountain J. Math., 24 (1994), 351-380.doi: 10.1216/rmjm/1181072470.

    [29]

    P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6.

    [30]

    L. Wang and G. Z. Dai, Global stability of virus spreading in complex heterogeneous networks, Siam J. Appl. Math., 68 (2008), 1495-1502.doi: 10.1137/070694582.

    [31]

    W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Mathematical Biosciences, 190 (2004), 97-112.doi: 10.1016/j.mbs.2002.11.001.

    [32]

    X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003.doi: 10.1007/978-0-387-21761-1.

    [33]

    X.-Q. Zhao and Z.-J. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., 4 (1996), 421-444.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(161) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return