Citation: |
[1] |
H. M. Anderson, V. Hutson and R. Law, On the conditions for persistence of species in ecological communities, Amer. Natur., 139 (1992), 663-668. |
[2] |
R. Aris and A. E. Humphrey, Dynamics of a chemostat in which two organisms compete for a common substrate, Biotechnol. Bioeng., 19 (1977), 1375-1386.doi: 10.1002/bit.260190910. |
[3] |
M. M. Ballyk and G. S. K. Wolkowicz, Exploitative competition in the chemostat for two perfectly substitutable resources, Math. Biosci., 118 (1993), 127-180.doi: 10.1016/0025-5564(93)90050-K. |
[4] |
E. Beretta, G. Bischi and F. Solimano, Stability in chemostat equations with delayed nutrient recycling, J. Math. Biol., 28 (1990), 99-111.doi: 10.1007/BF00171521. |
[5] |
B. Boon and H. Laudelout, Kinetics of nitrite oxidation by Nitrobacter winogradskyi, Biochem. J., 85 (1962), 440-447. |
[6] |
G. Butler, H. I. Freedman and P. Waltman, Uniform persistent systems, Proc. Amer. Math. Soc., 96 (1986), 425-430.doi: 10.1090/S0002-9939-1986-0822433-4. |
[7] |
G. Butler and P. Waltman, Persistence in dynamical systems, J. Diff. Equ., 63 (1986), 255-263.doi: 10.1016/0022-0396(86)90049-5. |
[8] |
G. J. Butler and G. S. K. Wolkowicz, Predator-mediated competition in the chemostat, J. Math. Biol., 24 (1986), 167-191.doi: 10.1007/BF00275997. |
[9] |
G. J. Butler and G. S. K. Wolkowicz, Exploitative competition in a chemostat for two complementary, and possibly inhibitory, resources, Math. Biosci., 83 (1987), 1-48.doi: 10.1016/0025-5564(87)90002-2. |
[10] |
S. Chakraborty and J. Chattopadhyay, Nutrient-phytoplankton-zooplankton dynamics in the presence of additional food source-A mathematical study, J. Biol. Syst., 16 (2008), 547-564.doi: 10.1142/S0218339008002654. |
[11] |
P. Chesson, J. M. Chase, P. A. Abrams, J. P. Grover, S. Diehl, R. D. Holt, S. A. Richards, R. M. Nisbet and T. J. Case, The interaction between predation and competition: A review and synthesis, Eco. Let., 5 (2002), 302-315. |
[12] |
W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, Heath, Boston, 1965. |
[13] |
J. M. Cushing, Integrodifferential Equations and Delay Models in Population Dynamics, Heidelberg, Springr-Verlag, 1977. |
[14] |
A. M. Edwards, Adding detritus to a nutrient-phytoplankton-zooplankton model: A dynamical-systems approach, J. Plankton Res., 23 (2001), 389-413.doi: 10.1093/plankt/23.4.389. |
[15] |
A. M. Edwards and J. Brindley, Oscillatory behaviour in a three-component plankton population model, Dyna. Stabi. Syst., 11 (1996), 347-370.doi: 10.1080/02681119608806231. |
[16] |
A. M. Edwards and J. Brindley, Zooplankton mortality and the dynamical behaviour of plankton population models, Bull. Math. Biol., 61 (1999), 303-339.doi: 10.1006/bulm.1998.0082. |
[17] |
J. P. Grover and R. D. Holt, Disentangling resource and apparent competition: Realistic models for plant-herbivore communities, J. Theor. Biol., 191 (1998), 353-376.doi: 10.1006/jtbi.1997.0562. |
[18] |
T. G. Hallam, On persistence of aquatic ecosystems. in Ocean. Sound Scat. Predic. (eds. N. R. Anderson and B. G. Zahurance), Plenum, New York, 1977, 749-765. |
[19] |
T. G. Hallam, Controlled persistence in rudimentary plankton models, in Proceedings of the First International Conference on Mathematical Modeling (eds. J. R. Avula), Vol. IV, University of Missouri Press, Rolla, 1977, 2081-2088. |
[20] |
T. G. Hallam, Structural Sensitivity of grazing formulation in nutrient controlled plankton models, J. Math. Biol., 5 (1978), 261-280.doi: 10.1007/BF00276122. |
[21] |
S. R. Hansen and S. P. Hubbell, Single-nutrient microbial competition: Qualitative agreement between experimental and theoretical forecast outcomes, Sci., 207 (1980), 1491-1493.doi: 10.1126/science.6767274. |
[22] |
R. D. Holt, J. Grover and D. Tilman, Simple rules for interspecific dominance in systems with exploitative and apparent competition, Amer. Natur., 144 (1994), 741-771.doi: 10.1086/285705. |
[23] |
S. B. Hsu, Limiting behavior for competing species, SIAM J. Appl. Math., 34 (1978), 760-763.doi: 10.1137/0134064. |
[24] |
J. P. Ivlev, Experimental Ecology of the Feeding of Fishes, Yale University Press, New Haven, 1961. |
[25] |
S. R. J. Jang and J. Baglama, Nutrient-plankton models with nutrient recycling, Comput. Math. Appl., 49 (2005), 375-378.doi: 10.1016/j.camwa.2004.03.013. |
[26] |
J. L. Jost, S. F. Drake, A. G. Fredrickson and M. Tsuchiya, Interaction of tetrahymena pyriformis, escherichia, coli, azotobacter vinelandii and glucose in a minimal medium, J. Bacteriol., 113 (1976), 834-840. |
[27] |
J.-J. Kengwoung-Keumo, Competition Between Two Phytoplankton Species Under Predation and Allelopathic Effects, Ph.D. dissertation, New Mexico State University, Las Cruces, New Mexico, U.S.A., 2012. |
[28] |
J. A. León and D. B. Tumpson, Competition between two species for two complementary or substitutable resources, J. Theor. Biol., 50 (1975), 185-201. |
[29] |
B. Li and Y. Kuang, Simple Food Chain in a Chemostat with Distinct Removal Rates, J. Math. Anal. and Appl., 242 (2000), 75-92.doi: 10.1006/jmaa.1999.6655. |
[30] |
R. K. Miller, Nonlinear Volterra Equation, W. A. Benjamin, N.Y., 1971. |
[31] |
J. Monod, Recherche sur la Croissance des Cultures Bacteriennes, Hermann et Cie, Paris, 1942. |
[32] |
B. Mukhopadhyay and R. Bhattacharryya, Modelling phytoplankton allelopathy in a nutrient-plankton model with spatial heterogeneity, Ecol. Model., 198 (2006), 163-173.doi: 10.1016/j.ecolmodel.2006.04.005. |
[33] |
L. Perko, Differential Equations and Dynamical Systems, Third edition, Springer, 2001.doi: 10.1007/978-1-4613-0003-8. |
[34] |
D. Rapport, An optimization model of food selection, Amer. Natur., 105 (1971), 575-587.doi: 10.1086/282746. |
[35] |
S. Roy, The coevolution of two phytoplankton species on a single resource: Allelopathy as a pseudo-mixotrophy, Theor. Popul. Biol., 75 (2009), 68-75.doi: 10.1016/j.tpb.2008.11.003. |
[36] |
S. Ruan, Oscillations in plankton models with recycling, J. Theor. Biol., 208 (2001), 15-26. |
[37] |
S. Ruan, Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient recycling, J. Math. Biol., 31 (1993), 633-654.doi: 10.1007/BF00161202. |
[38] |
A. Sinkkonen, Modelling the effect of autotoxicity on density-dependent phytotoxicity, J. Theor. Biol., 244 (2007), 218-227.doi: 10.1016/j.jtbi.2006.08.003. |
[39] |
J. H. Steele and E. W. Henderson, The role of predation in plankton models, J. Plankton Res., 14 (1992), 157-172.doi: 10.1093/plankt/14.1.157. |
[40] |
M. A. Tabatabai, W. M. Eby, S. Bae and K. P. Singh, A flexible multivariable model for phytoplankton growth, Math. Biosci. Eng., 10 (2013), 913-923.doi: 10.3934/mbe.2013.10.913. |
[41] |
H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol., 30 (1992), 755-763.doi: 10.1007/BF00173267. |
[42] |
G. S. K. Wolkowicz and Z. Lu, Global dynamics of a mathematical model of competition in the chemostat: General response functions and differential death rates, J. Appl. Math., 52 (1992), 222-233.doi: 10.1137/0152012. |
[43] |
R. D. Yang and A. E. Humphrey, Dynamics and steady state studies of phenol biodegradation in pure and mixed cultures, Biotechnol. Bioeng., 17 (1975), 1211-1235. |