2014, 11(6): 1375-1393. doi: 10.3934/mbe.2014.11.1375

Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures

1. 

Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501

2. 

Department of Mathematics, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555

3. 

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914

Received  July 2013 Revised  May 2014 Published  September 2014

In this paper, we formulate an SIR epidemic model with hybrid of multigroup and patch structures, which can be regarded as a model for the geographical spread of infectious diseases or a multi-group model with perturbation. We show that if a threshold value, which corresponds to the well-known basic reproduction number $R_0$, is less than or equal to unity, then the disease-free equilibrium of the model is globally asymptotically stable. We also show that if the threshold value is greater than unity, then the model is uniformly persistent and has an endemic equilibrium. Moreover, using a Lyapunov functional technique, we obtain a sufficient condition under which the endemic equilibrium is globally asymptotically stable. The sufficient condition is satisfied if the transmission coefficients in the same groups are large or the per capita recovery rates are small.
Citation: Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375
References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans,, Oxford University, (1991). Google Scholar

[2]

J. Arino, Diseases in metapopulations,, in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, (2009), 65. doi: 10.1142/7223. Google Scholar

[3]

M. S. Bartlet, Deterministic and stochastic models for recurrent epidemics,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (1956), 81. Google Scholar

[4]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, Academic Press, (1979). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[5]

H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 4391. doi: 10.1016/j.amc.2011.10.015. Google Scholar

[6]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, 1st edition, (2000). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[7]

M. J. Faddy, A note on the behavior of deterministic spatial epidemics,, Math. Biosci., 80 (1986), 19. doi: 10.1016/0025-5564(86)90064-7. Google Scholar

[8]

H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set,, J. Dynam. Diff. Equat., 6 (1994), 583. doi: 10.1007/BF02218848. Google Scholar

[9]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14 (2006), 259. Google Scholar

[10]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793. doi: 10.1090/S0002-9939-08-09341-6. Google Scholar

[11]

J. M. Hyman and T. LaForce, Modeling the spread of influenza among cities,, in Bioterrorism (eds. H. T. Banks and C. Castillo-Chavez), (2003), 211. Google Scholar

[12]

Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308 (2005), 343. doi: 10.1016/j.jmaa.2005.01.034. Google Scholar

[13]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic model,, Math. Med. Biol., 21 (2004), 75. doi: 10.1007/s11538-008-9352-z. Google Scholar

[14]

T. Kuniya and Y. Muroya, Global stability of a multi-group SIS epidemic model for population migration,, Discrete Cont. Dyn. Sys. Series B, 19 (2014), 1105. doi: 10.3934/dcdsb.2014.19.1105. Google Scholar

[15]

J. P. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[16]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191. doi: 10.1016/S0025-5564(99)00030-9. Google Scholar

[17]

M. Y. Li and Z. Shuai, Global stability of an epidemic model in a patchy environment,, Canadian Appl. Math. Quart., 17 (2009), 175. Google Scholar

[18]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Diff. Equat., 284 (2010), 1. doi: 10.1016/j.jde.2009.09.003. Google Scholar

[19]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38. doi: 10.1016/j.jmaa.2009.09.017. Google Scholar

[20]

Y. Muroya, Y. Enatsu and T. Kuniya, Global stability of extended multi-group SIR epidemic models with patches through migration and cross patch infection,, Acta Mathematica Scientia, 33 (2013), 341. doi: 10.1016/S0252-9602(13)60003-X. Google Scholar

[21]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. RWA, 13 (2012), 1581. doi: 10.1016/j.nonrwa.2011.11.016. Google Scholar

[22]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge University Press, (1995). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[23]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence,, Comput. Math. Appl., 60 (2010), 2286. doi: 10.1016/j.camwa.2010.08.020. Google Scholar

[24]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[25]

R. S. Varga, Matrix Iterative Analysis,, Prentice-Hall, (1962). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[26]

W. Wang and X. Zhao, An epidemic model in a patchy environment,, Math. Biosci., 190 (2004), 97. doi: 10.1016/j.mbs.2002.11.001. Google Scholar

[27]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. RWA, 11 (2010), 995. doi: 10.1016/j.nonrwa.2009.01.040. Google Scholar

show all references

References:
[1]

R. M. Anderson and R. M. May, Infectious Diseases of Humans,, Oxford University, (1991). Google Scholar

[2]

J. Arino, Diseases in metapopulations,, in Modeling and Dynamics of Infectious Diseases (eds. Z. Ma, (2009), 65. doi: 10.1142/7223. Google Scholar

[3]

M. S. Bartlet, Deterministic and stochastic models for recurrent epidemics,, in Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, (1956), 81. Google Scholar

[4]

A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences,, Academic Press, (1979). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[5]

H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 4391. doi: 10.1016/j.amc.2011.10.015. Google Scholar

[6]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation,, 1st edition, (2000). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[7]

M. J. Faddy, A note on the behavior of deterministic spatial epidemics,, Math. Biosci., 80 (1986), 19. doi: 10.1016/0025-5564(86)90064-7. Google Scholar

[8]

H. I. Freedman, M. X. Tang and S. G. Ruan, Uniform persistence and flows near a closed positively invariant set,, J. Dynam. Diff. Equat., 6 (1994), 583. doi: 10.1007/BF02218848. Google Scholar

[9]

H. Guo, M. Y. Li and Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models,, Canadian Appl. Math. Quart., 14 (2006), 259. Google Scholar

[10]

H. Guo, M. Y. Li and Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793. doi: 10.1090/S0002-9939-08-09341-6. Google Scholar

[11]

J. M. Hyman and T. LaForce, Modeling the spread of influenza among cities,, in Bioterrorism (eds. H. T. Banks and C. Castillo-Chavez), (2003), 211. Google Scholar

[12]

Y. Jin and W. Wang, The effect of population dispersal on the spread of a disease,, J. Math. Anal. Appl., 308 (2005), 343. doi: 10.1016/j.jmaa.2005.01.034. Google Scholar

[13]

A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic model,, Math. Med. Biol., 21 (2004), 75. doi: 10.1007/s11538-008-9352-z. Google Scholar

[14]

T. Kuniya and Y. Muroya, Global stability of a multi-group SIS epidemic model for population migration,, Discrete Cont. Dyn. Sys. Series B, 19 (2014), 1105. doi: 10.3934/dcdsb.2014.19.1105. Google Scholar

[15]

J. P. LaSalle, The Stability of Dynamical Systems,, SIAM, (1976). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[16]

M. Y. Li, J. R. Graef, L. Wang and J. Karsai, Global dynamics of a SEIR model with varying total population size,, Math. Biosci., 160 (1999), 191. doi: 10.1016/S0025-5564(99)00030-9. Google Scholar

[17]

M. Y. Li and Z. Shuai, Global stability of an epidemic model in a patchy environment,, Canadian Appl. Math. Quart., 17 (2009), 175. Google Scholar

[18]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Diff. Equat., 284 (2010), 1. doi: 10.1016/j.jde.2009.09.003. Google Scholar

[19]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38. doi: 10.1016/j.jmaa.2009.09.017. Google Scholar

[20]

Y. Muroya, Y. Enatsu and T. Kuniya, Global stability of extended multi-group SIR epidemic models with patches through migration and cross patch infection,, Acta Mathematica Scientia, 33 (2013), 341. doi: 10.1016/S0252-9602(13)60003-X. Google Scholar

[21]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. RWA, 13 (2012), 1581. doi: 10.1016/j.nonrwa.2011.11.016. Google Scholar

[22]

H. L. Smith and P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition,, Cambridge University Press, (1995). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[23]

R. Sun, Global stability of the endemic equilibrium of multigroup SIR models with nonlinear incidence,, Comput. Math. Appl., 60 (2010), 2286. doi: 10.1016/j.camwa.2010.08.020. Google Scholar

[24]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29. doi: 10.1016/S0025-5564(02)00108-6. Google Scholar

[25]

R. S. Varga, Matrix Iterative Analysis,, Prentice-Hall, (1962). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[26]

W. Wang and X. Zhao, An epidemic model in a patchy environment,, Math. Biosci., 190 (2004), 97. doi: 10.1016/j.mbs.2002.11.001. Google Scholar

[27]

Z. Yuan and L. Wang, Global stability of epidemiological models with group mixing and nonlinear incidence rates,, Nonlinear Anal. RWA, 11 (2010), 995. doi: 10.1016/j.nonrwa.2009.01.040. Google Scholar

[1]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[2]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[3]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[4]

Zhen Jin, Zhien Ma. The stability of an SIR epidemic model with time delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 101-109. doi: 10.3934/mbe.2006.3.101

[5]

Wanbiao Ma, Yasuhiro Takeuchi. Asymptotic properties of a delayed SIR epidemic model with density dependent birth rate. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 671-678. doi: 10.3934/dcdsb.2004.4.671

[6]

Chufen Wu, Peixuan Weng. Asymptotic speed of propagation and traveling wavefronts for a SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 867-892. doi: 10.3934/dcdsb.2011.15.867

[7]

Xia Wang, Shengqiang Liu. Global properties of a delayed SIR epidemic model with multiple parallel infectious stages. Mathematical Biosciences & Engineering, 2012, 9 (3) : 685-695. doi: 10.3934/mbe.2012.9.685

[8]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[9]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[10]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[11]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61

[12]

Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059

[13]

Yan Li, Wan-Tong Li, Guo Lin. Traveling waves of a delayed diffusive SIR epidemic model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 1001-1022. doi: 10.3934/cpaa.2015.14.1001

[14]

Sergio Grillo, Jerrold E. Marsden, Sujit Nair. Lyapunov constraints and global asymptotic stabilization. Journal of Geometric Mechanics, 2011, 3 (2) : 145-196. doi: 10.3934/jgm.2011.3.145

[15]

Qun Liu, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi. Dynamical behavior of a multigroup SIRS epidemic model with standard incidence rates and Markovian switching. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5683-5706. doi: 10.3934/dcds.2019249

[16]

Xiaomei Feng, Zhidong Teng, Kai Wang, Fengqin Zhang. Backward bifurcation and global stability in an epidemic model with treatment and vaccination. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 999-1025. doi: 10.3934/dcdsb.2014.19.999

[17]

Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi. Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences & Engineering, 2012, 9 (2) : 297-312. doi: 10.3934/mbe.2012.9.297

[18]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[19]

Toshikazu Kuniya, Yoshiaki Muroya. Global stability of a multi-group SIS epidemic model for population migration. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1105-1118. doi: 10.3934/dcdsb.2014.19.1105

[20]

Yongli Cai, Yun Kang, Weiming Wang. Global stability of the steady states of an epidemic model incorporating intervention strategies. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1071-1089. doi: 10.3934/mbe.2017056

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

[Back to Top]